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I

WELCOME TO FSE

Frontiers in Science and Engineering, an International Journal edited by The Hassan II Academy 
of Science and Technology uses author-supplied PDFs for all online and print publication.

The objective of this electronic journal is to provide a platform of exchange of high quality 
research papers in science and engineering. Though it is rather of wide and broad spectrum, it is 
organized in a transparent and simple interactive manner so that readers can focus on their direct 
interest.

All papers are submitted to the normal peer-review process. Publication criteria are based on : 
i) Novelty of the problem or methodology and problem solving, ii) Salience of the approach and 
solution technique, iii) Technical correctness and outputs, iv) Clarity and organization.

Papers are first reviewed by the Executive Board Director who receives the paper and, if 
relevant in terms of the overall requirements, it is then proposed to one of the most appropriate 
associate editor on the field who will select 2 to 3 expert reviewers. Electronic printing will allow 
considerable time savings for submission delays which will be reduced drastically to less than 
three to six months. Prospective authors are therefore invited to submit their contribution for 
assessment while subjected to similar quality criteria review used in paper journals.

Authors are notified of acceptance, need for revision or rejection of the paper. It may be noted that 
papers once rejected cannot be resubmitted. All the details concerning the submission process are 
described in another section. This electronic journal is intended to provide :

• the announcement of significant new results,
• the state of the art or review articles for the development of science and technology,
• the publication of proceedings of the Academy or scientific events sponsored by the

       Academy,
• the publication of special thematic issues.

So that the scientific community can :
• promptly report their work to the scientific community,
• contribute to knowledge sharing and dissemination of new results.

The journal covers the established disciplines, interdisciplinary and emerging ones. Articles should 
be a contribution to fundamental and applied aspects, or original notes indicating a significant 
discovery or a significant result.

The topics of this multidisciplinary journal covers amongst others :
Materials Science, Mathematics, Physics, Chemistry, Computer sciences, Energy, Earth Science, 
Biology, Biotechnology, Life Sciences, Medical Science, Agriculture, Geosciences, Environment, 
Water, Engineering and Complex Systems, Science education, Strategic and economic studies, 
and all related modeling, simulation and optimization issues, etc. ...

Once, a certain number of papers in a specific thematic, is reached, the Academy might edit a 
special paper issue in parallel to the electronic version.
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II

FOREWORD
The present volume of “Frontiers in Sciences and Engineering” is a special issue dedicated to 
the memory of our friend and colleague Abdelghani BELLOUQUID, born on February 2, 1966 
and who passed away on August 31, 2015.

Upon his sudden death, late Abdelghani BELLOUQUID was a Professor of Mathematics at 
Cadi Ayyad University, and corresponding member (since February 2013) of the Hassan II 
Academy of Sciences and Technology. He was very active in research and has made several 
important contributions in kinetic theory for active particles and modeling complex systems. The 
authors of the articles in this volume are colleagues and friends of Abdelghani BELLOUQUID. 
Through their contributions, they wish to pay tribute to him. All the papers have been evaluated 
positively by peer referees. 

The paper of N. Bellomo (Torino) and N. Chouhad (Essaouira) deals with the derivation of 
macroscopic tissue models, for binary mixtures of multi-cellular systems, from the underlying 
description delivered, by methods of the kinetic theory. The paper of F. Golse (Paris) establishes 
the mean-valued convergence of a system of charged particles to a regularized relativistic 
Vlasov-Maxwell system. The paper by M. Delitala (Torino), M. Ferraro (Torino) and E. Piretto 
(Torino) presents a mathematical model for cancer development. The contribution of A. Noussair 
(Bordeaux) deals with models of active cell-to-cell biological interactions. The paper of E.M. 
Ouhabaz (Bordeaux) is about boundedness of the Littlewood-Paley-Stein functionals associated 
with Schrödinger operators. The contribution of A. Azizi (Oujda), M. Taous (Errachidia) and 
A. Zekhnini (Nador) is in number theory and deals with 2-class groups, Hilbert class and 
2-metacyclic groups. A review of different approaches in machine intelligence is given in the 
paper by M. Ghallab (Toulouse) and F. Ingrand (Toulouse). Finally, the paper submitted by 
L.M Rebaiaia (Quebec) and D. Ait-Kadi (Quebec) is on reliability evaluation of networks and 
algorithms.

We wish to express our gratitude to the Editors of “Frontiers in Sciences and Engineering” and 
more particularly Professors Omar Fassi-Fehri and Driss Ouazar for their precious help and for 
agreeing to publish this special issue of FSE.

Guest Editors :

Pr. El Maati OUHABAZ
Université de Bordeaux, Talence. France
Corresponding member of the Hassan II Academy of Sciences and Technology

Pr. Youssef OUKNINE
Université Cadi Ayyad, Marrakech. Maroc
Resident member of the Hassan II Academy of Sciences and Technology
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In Memorium

Abdelghani BELLOUQUID (2/2/1966–8/31/2015)

On Monday, August 31, 2015, we learnt with deep sorrow and sadness the passing away of 
our colleague Professor Abdelghani BELLOUQUID, appointed corresponding member of the     
Hassan II Academy of Science and Technology in February 2013 by His Majesty the King 
-May God protect Him-. In this painful circumstance, we present on behalf of all members of 
the Academy our sincere condolences to his entire family, to his relatives and friends, assuring 
them of our compassion and our sympathy in this cruel ordeal and imploring God the Almighty 
to surround his sole with His holy mercy and clemency and to receive him in His vast paradise 
among the venerable elects and to provide patience and consolation to his family members.

Born in 1966, the late Professor Abdelghni BELLOUQUID happened to be the youngest member 
of our Academy. Having obtained his Bachelor’s Degree in Mathematics in 1987 from the Semlalia 
Faculty of Sciences in Marrakech, he went to France to prepare his Diploma of Advanced Studies 
at the Paris 7 University, where he earned it in 1989. He was then enrolled in the same University 
to pursue his doctoral studies, which he defended in 1995 in the discipline of applied mathematics. 
In 1996 he began his professional career as a faculty member at the Ecole Normale Supérieure in 
Cachan, France. Between 1997 and 1999, he became a temporary teaching and research associate 
at the University of Evry. Between 2000 and 2001, he was recruited as teacher at the University 
of Evry and at the University of Marne la Vallée in France. From 2001 to 2005, he was recruited 
as a researcher at the Ecole Polytechnique de Turin in Italy. In 2005, he returned to Morocco and 
was recruited as an Assistant Professor at Cadi Ayad University in Marrakech and assigned to 
ENSA in Safi.
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Professor Abdelghani BELLOUQUID’s teaching and research activities focused on modeling, 
mathematical analysis and numerical simulation of complex systems. His research work was 
accompanied during his professional track by the publication of several scientific papers in 
international journals. He is known for the publication of 2 books, 4 book chapters more than fifty 
(52) scientific articles in peer-reviewed journals. He has also been editor and member of editorial 
boards of several international scientific journals, as he was the recipient of the 2009 Grand Prize for 
Invention and Research in Science and Technology. Two of his publications have been identified as 
the most cited ones in the field of applied mathematics in May 2006 and January 2007. He also took 
on several responsibilities at Cadi Ayad University as : member of the University Council, member 
of the Scientific Committee, member of thesis committee and board member of the institution.

Since his appointment by His Majesty the King as a corresponding member of our Academy, 
the important personal contribution of Professor BELLOUQUID, his valuable help and his 
availability, particularly in the framework of the activities of the Academy’s College of Modeling 
and Information Sciences made the Academy forever grateful.

The death of Prof. Abdelghani BELLOUQUID is certainly a big loss for our Company but also 
a great loss for the research community of our country. Throughout his professional career, the 
missing colleague has never ceased to conduct his research activities. He has participated in a 
multitude of national and international conferences. He made numerous scientific visits to several 
countries. He has also been able to carry out many partnerships and scientific collaboration.

Prof. BELLOUQUID had perfect knowledge of his scientific discipline. Gifted with talent, he 
was recognized for his competence as well as for his abnegation and his devotion in carrying his 
duties and assuming his responsibilities. He was a well admired teacher, talented researcher and 
a great scientist in the field of Applied Mathematics in Morocco.

His remembrance will remain alive among all those who have known him and worked with him. 
During the short period he spent in our Academy as a corresponding member, his contribution 
was highly appreciated. He will be missed very much.

We implore God Almighty to welcome our late colleague in his vast paradise among the Prophets, 
Saints, Martyrs and Virtuous and grant him ample reward for the praiseworthy endeavors and 
good work he has accomplished at the service of his country.

In these painful circumstances, we once again wish to express our deepest condolences and 
sympathy to the family of the Prof. BELLOUQUID and all of his beloved ones; imploring the 
Almighty to have him  in His Holy Mercy.

“We are to God and to Him we shall return.”
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Biography 
of late Prof. Abdelghani BELLOUQUID

1. Scientific achievements

The scientific research of late Prof. Abdelghani BELLOUQUID has been mainly devoted to the theory and 
applications, in various fields of life sciences, of methods of the mathematical kinetic theory and derived 
from the well known Boltzmann equation. More in detail, it has been focused on the following main topics: 

1- Mathematical modeling, qualitative analysis, and simulations of multicellular systems in biology 
with special focus on the modeling of the competition between cancer and immune cells; 

2- Mathematical modeling, qualitative analysis, and simulations of complex systems devoted to the 
study of the dynamics of vehicular traffc and pedestrian crowds; 

3- Analytic aspects of the mathematical theory of the classical and relativistic Boltz-mann equation; 

4- Derivation of macroscopic models from the underlying description at the micro-scopic scale of 
biological system and of self-propelled particles. 

Several features witness the excellence of the scientific activity of Prof. A. BELLOUQUID, mainly : 

• Almost all papers are published, for each of the four aforementioned topics, in highly ranked 
journals. For Example “SIAM Journal of Applied Mathematics”, ” SIAM Multiscale Modeling and 
Simulations”, “Mathematical Models and Methods in Applied Sciences”, “J. Differential Equations”, 
”Nonlinear Analysis TMA”. 

• 6-7 Papers are “highly cited”, namely they are above the top 1% threshold of citations for papers 
published on journals of mathematics; 

• Prof. A. BELLOUQUID has written, with M. Delitala (PhD), a book on the immune com-petition 
published by Birkhauser (Boston); this book is currently the guideline of various PhD dissertations 
at international level; 

• Some outstanding results have been achieved, for example the derivation of the celebrated Keller-
Segel model and the modeling of Darwinian type dynamics at the cellular level; 

• Prof. A. BELLOUQUID contributed to the development of the so-called kinetic theory for active 
particles, which in a mathematical theory nowadays used by several mathematicians to model living, 
hence complex systems. 

2. Resereach activity of Prof. A. BELLOUQUID 

2.1. The modeling and simulation of complex (living) systems 

This research is mainly based on the following motivation: 

The modeling and simulation of complex (living) systems can be regarded as a challenging, however diffcult, 
new frontier of applied mathematics. Moreover, their study always needs a multiscale approach, where the 
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first step is the selection of the observation scale and of the related representation by mathematical variables 
and equations, while the second step is the search of the mathematical links between the scales used for the 
modeling approach. More precisely the link between macroscopic equations and to the underlying scale 
of individuals. The literature in the field is still looking for consistent approach, as the mathematical tools 
valid for the inert matter cannot be straightforwardly transferred to the living matter. 

According to the above motivation, the scientific research of Prof. A. BELLOUQUID focuses on some 
multiscale issues related to the study of large living (hence complex) systems constituted by many living 
entities undergoing nonlinearly additive interactions. This topic has recently received a great deal of interest, 
first from physicists and subsequently from researchers in various other fields such as biology, economy and 
social sciences. Indeed, complexity characteristics are present not only in biology, but also in all sciences, 
where the human behaviors can modify, sometimes in a large amount, the dynamics of the class of systems 
under consideration. More recently a growing interest is witnessed among applied mathematicians, who 
look at this new research field by arguing that it offers a challenge to develop new mathematical theories 
or, at least, new mathematical methods. In fact, one of the many diffculties that are encountered along this 
ambitious path is the lack of first principles that characterize living systems. 

2.1.1. Biological expression and interactions 

Let us consider a large system of interacting entities, where each of them express specific biological 
functions, which depend on their phenotype structure as well as on that of the other entities. More precisely, 
this expression is modified by interactions, which are nonlinearly additive. Therefore, this ability has 
to be inserted into the said structure. Some papers have already taken into account this aspect. The first 
example arguably is the paper by Jager and Segel [JK] concerning the social behavior in large populations 
of interacting entities, namely the action of some insects to impose their behavioral rules to the others. 
The highly cited papers [15-16] of Prof. A. BELLOUQUID are focused more precisely on developmental 
biology, where the micro-state is the progression of epithelial cells, which have lost their differentiation 
and move toward the state of cancer cells featured by different sequential abilities such as proliferation, 
escape from the immune system up to metastatic competence. Several papers [10, 11, 22, 27, 30, 36, 
45, 49, 57, 58] of Prof. A. BELLOUQUID were developed following [15]. The most important ideas are 
proposed in the book [56] privileging the cellular scale and the statistical mechanics approach, where a 
detailed presentation of the overall approach is given covering the whole path from modelling to simulation 
through a detailed study of analytic problems, namely existence of solutions and asymptotic analysis to 
derive macroscopic tissue models from the underlying description at the micro-scale. However, it has to 
be observed that this approach needs now some developments to include nonlinear features of interactions 
and Darwinian type mutations and selections. Additional needed developments will be discussed in the 
next referring specifically to the mathematical approach. The problem of identification of the parameters 
in a model of immune competition was treated in [48], where an approach of inverse problems toward the 
identification from measurements of densities of cells population was used. 

2.1.2. Mutations, selection, and evolution 

As it is known [WE], the onset and development of genetic diseases has an origin related to the dynamics 
at a cellular level as it can contribute to a dynamics at a cellular level when, during replication, the daughter 
cell exhibits a phenotype different from that of the mother cell, despite both belong to the same genotype 
[BR]. This dynamics can be viewed within the general theory of evolution [ER]. The highly cited paper [40] 
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indicates some features of the dynamics which should be retained by mathematical models, quoting [40]: 
Interactions include proliferative events, which normally generate individuals with the same phenotype, 
but also, although with a small probability, new individuals, with a different phenotype: either more or less 
suited to a changing environment. As a consequence, the number of populations can evolve in time. If a 
number of populations constitutes the inner system that interacts with the external environment that evolves 
in time due to the aforementioned interaction. The distribution of the phenotypes is heterogeneous and can 
evolve in time. The net proliferation rate of the new born population depends on its fitness with respect to 
the environment. 

According to the above motivation, the pioneer paper [40] provides a general mathematical structure 
suitable to include a variety of specific biological dynamics such as the immune competition in the presence 
of mutations and selection. Moreover, it contributes to the challenging objective of reaching a deeper 
understanding of the laws of Darwinian evolutionary theory [AO]. 

2.1.3. From cells to tissues 

The introduction of a space structure, followed by asymptotic methods can lead to the derivation of tissue 
models at the macro-scale. Asymptotic methods technically amount to expanding the distribution function 
in terms of a small dimensionless parameter related to the intermolecular distances (the space-scale 
dimensionless parameter) that is 

equivalent to the connections between the biological constants. The limit that we obtain is singular and the 
convergence properties can be proved under suitable technical assumptions. In [12], biological systems are 
considered where interactions do not follow classical mechanical rules, and biological activity (biological 
progression, proliferative and destructive events for cancer cells in competition with the immune system) 
may play a relevant role in determining the dynamics. The main idea consists in perturbing the transport 
equation by a velocity jump process, which appears appropriate to model the velocity dynamics of cells 
modelled as living particles. Various works, among others [18-21, 23, 25-27, 30-31, 37, 50, 60], have 
contributed to this research line reviewed in the highly cited survey paper [34]. It is worth mentioning that 
this method leads to the derivation (see the highly cited paper [28], and [41-42,47, 51]), of classical models 
of the continuum mechanics of biology such as the celebrated models by Keller-Segel and Patlak to model 
chemotaxis phenomena, and the flux limited pattern formation in biological tissues where theoretical and 
experimental studies motivated the derivation of macro-scale models consistent with biological reality. The 
strong paper [53] focused on chemotaxis models in biology, namely the classical Keller-Segel model and 
subsequent modifications, in several cases, are developed to obtain models that prevent non physical bow 
up of solutions as flux limited models. Moreover this paper is devoted to the qualitative analysis of analytic 
problems such as existence of solutions, blow up, traveling waves, and the derivation of macroscopic models 
from the underlying description delivered by kinetic theory methods. This approach leads to the derivation of 
classical models as well as of new models, which might deserve attention toward related analytic problems. 
More recently, Prof. A. BELLOUQUID developed a computational approach to a class of pattern formation 
models derived from the celebrated Keller-Segel model obtained by the underlying description delivered by 
generalized kinetic theory methods. The derivation is based on a decomposition with two scales, namely the 
microscopic and the macroscopic one technically related by suitable small parameters accounting for the 
time and space dynamics (see [55]). The novelty of [55] is that the computational scheme follows precisely 
the derivation hallmarks by using the same decomposition and parameters. This idea improves the stability 
properties of the solutions with respect to classical approaches known in the literature. 
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2.1.4. Mathematical Challenges Toward Multiscale Modeling of Behavioral Crowd Dynamics 

The mathematical literature on the modeling pedestrian crowd has rapidly developed in the last decade 
due to the interest in the contribution that the study of these systems can bring to the society, as well as to 
the challenging analytic and computational problems, generated by the derivation of models and by their 
application to real world dynamics. The existing literature is reported in some survey papers, which offer to 
applied mathematicians different view points and modelling strategies in a field where a unified, commonly 
shared, approach does not exists yet. The papers [32, 44, 59] introduce the concept of the crowds as a living, 
hence complex system and subsequently the search of mathematical tools suitable to take into account, as far 
as it is possible, the complexity features of the system. The hints proposed in [32, 44, 59] have been developed 
for a dynamics in unbounded domains. These papers introduce the concept of behavioral crowd, namely of 
a dynamics which depends on the strategy and behaviors that walkers develop based also to interactions, 
mechanical and social, with the surrounding walkers. In principle, one may look at this type of dynamics 
as at a new branch of dynamics, where the aforementioned complex interactions require new ideas and 
mathematical tools, which are object of an increasing interest by researchers active in the field. Interesting 
results concerning the derivation of macroscopic equations by suitable asymptotic methods in crowds dynamic 
is already available [54], which is arguably the first one where this interesting topic was addressed.

2.1.5. On the modeling of traffc 

From a mathematical point of view, traffc flow phenomena can be modeled at three different scales: 
microscopic, kinetic and macroscopic. The microscopic description refers to vehicles individually 
identified and leads to systems of ordinary differential equations, while continuum mechanics assumptions 
lead to macroscopic models stated in terms of partial differential equations corresponding to fluid dynamic 
equations. The approach offered by the kinetic theory, developed after the pioneer contribution by 
Prigogine and Herman, uses Boltzmann and/or Vlasov-type equations to model the complex system under 
consideration. The highly cited paper [35] focuses on the use of kinetic theory methods which are, in the 
author’s opinion, a useful approach that can be properly developed to capture the complexity of the physical 
reality of the dynamics of vehicular traffc. The basic idea is to consider each vehicular-driver system as 
a, so-called, active particle of a large complex system, to model the heterogeneous behavior of the micro-
systems that compose the overall system. The evolution of the system is ruled by interactions between 
the active particles described by stochastic games. The modelling approach consider the heterogeneous 
behavior (well remarked by the engineer Daganzo) of the driver-vehicle micro-system, as real flow include 
different driving experience, quality of the vehicles to be also related to the quality of the environment. The 
derivation of hydrodynamic-type models should be obtained by suitable asymptotic limit from the kinetic 
description, namely by letting the distance between vehicles tend to zero. Therefore, the mathematical 
structure of macroscopic models should not be heuristically postulated a priori. The said program identifies 
precisely the aims and contents of the papers [33, 46], which are based on the modelling of nonlinearly 
additive and delocalized interactions. Subsequently, models of the kinetic theory for active particles are 
derived and, finally, by asymptotic methods, equations at the macroscopic scale are derived. 

2.2. Mathematical methods in nonlinear kinetic theory 

2.2.1. The hydrodynamical limit of the nonlinear models of kinetic theory 

In his sixth problem, Hilbert asked for a full mathematical justification of fluid mechanics equation starting 
from particles systems. If we take a Boltzmann equation as a starting point, this problem can be stated as an 
asymptotic problem. Namely, starting from Boltzmann equation, can we derive fluid mechanics equations 
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and in which regime? From a physical point of view, we expect that a gas can be described by a fluid equation 
when the mean free path (Knudsen number) goes to zero. During the last two decades this problem got a lot 
of interest. A program in this direction was initiated by Bardos et al who, using the renormalized solutions to 
the Boltzmann equation constructed by Diperna and Lions, set an asymptotic regime where one can derive 
different fluid equations (and in particular incompressible models) depending on the chosen scaling. This is 
a theme on which Prof. A. BELLOUQUID has been working since the beginning of his PhD, and precisely 
he has developed a robust program [1-8, 13-14,17, 29] concerning these (rigorous) derivation from general 
kinetic models, and has obtained interesting results in the case of regular solutions for the most three classical 
equations of fluid mechanics in the incompressible or compressible regime, namely the incompressible 
Navier-Stokes equa¬tions, the Stokes equations, the diffusive equations, the compressible Euler equation 
by considering general models of kinetic theory and in particular the classical Boltzmann equation, discrete 
velocity models of Boltzmann equation, BGK equation, Kac equation,etc. More recently [43], Prof. A. 
BELLOUQUID was interested in the hyperbolic limits in kinetic theory, and proposed a nonstandard scaling 
to be understood as a sort of intermediate hyperbolic limit, which connects the (macroscopic) hyperbolic 
limiting behavior of the physical system with the microscopic properties usually obtained under parabolic 
scalings. He presented the strong result by means of a general kinetic frame for the intermediate hyperbolic 
limit which covers some well-known examples in kinetic theory (Vlasov-Poisson, Fokker-Planck systems 
and linear relaxation for Boltzmann-type equations in semiconductor theory, among others). 

2.2.2. Analytic aspects of the mathematical theory of the classical and relativistic Boltzmann equation 

A. Existence of some classical and relativistic kinetic models 

Prof. A. BELLOUQUID studied the global existence for a certain spatially inhomogenous classical kinetic 
equations, such as Boltzmann, BGK models [1, 9, 39], Vlasov-Kac equation [24]. For such equations, 
the solution exists globally in time. The global existence for discrete models of vehicular traffic has been 
developed in [38]. 

B. Convergence to equilibrium of some classical and relativistic kinetic models 

From physical point of view, the density of particle is assumed to converge to an equi-librium represented 
by a Maxwellien of the velocity v when time becomes large. The goal of work introduced in [1, 9] was 
to give some mathematical results in these topics. Prof. A. BELLOUQUID developed a new constructive 
approach to this problem for a large class of classical kinetic equations. The idea of the approach is to prove 
a weak coercive estimate, which implies polynomial convergence rate. The method works very well for the 
classical Boltzmann and BGK equations. In the case of relativistic kinetic theory, Prof. A. BELLOUQUID 
got recently a mathematical description of a relativistic gas in certain relaxation regimes. This was done 
in terms of the relativistic BGK equation. In that framework, such gases are regarded as consisting of 
many microscopic structures less particles. Concerning the mathematical study of the relativistic BGK 
equation, several issues related to this model which seem to have been overlooked in the previous physical 
literature were considered in [39], including the unique determination of associated physical parameters, 
the construction of the relativistic BGK system, classical, ultra-relativistic and hydrodynamical limits, 
maximum entropy principles, the analysis of the linearized operator, and the near-global-Maxwellian 
existence of the linearized BGK relativistic model. The global existence of the nonlinear relativistic BGK 
model and rapid time convergence to equilibrium was an open problem, and it was treated this year in [52], 
where Prof. A. BELLOUQUID studied the well-posedness and the rapid polynomial time decay at infinity 
of solutions. 
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3. Researcher 

The education and scientific activity of Prof. A. BELLOUQUID developed at an international level. 
An additional feature is the interdisciplinary research activity. These statements are documented in the 
following. 

3.1. Education 

- 2001: Doctorat d’ Etat at University of Semlalia Marrakech Morrocco and Ecole Normale Sup´erieure de 
Cachan (France). Advisor: Claude Bardos (Professor, University of Paris 7). 

- 1995: Ph.D. in Applied Mathematics at University of Paris 7, France. Advisors: Claude Bardos (Professor, 
University Paris 7) and Francois Golse (Professor, Ecole Polytechnique). 

- 1990: M. Sc. in Mathematics, University of Paris 7, France. 

- 1989: B. Sc. in Mathematics, University Cadi Ayyad, Marrakech, Morocco. 

3.2. Editorial Boards 

Journals: Communications In Applied and Industrial Mathematics (Journal of the Italian Society of Applied 
and Industrial Mathematics), Abstract And Applied Analysis, International journal of mathematical models 
and methods in applied sciences, International journal of cancer and diagnosis, The Scientific World 
Journal, Mthematical Analysis, International journal of theoretical and mathematical physics, ISRN Applied 
Mathematics, American Journal of Applied Mathematics and Statistics, Applied Science Segment, Ilirias 
Journal of Mathematics, Journal of Scientific Research and Reports. 

3.3. Research Interests 

Mathematical methods in nonlinear kinetic theory; Asymptotic and hydrodynamic regimes; Mathematical 
models of complex systems in immunology and biology; Multi-scale cancer modeling; Mathematical 
models of vehicular traffic and crowds; General Relativity; Numerical analysis.

3.4. Professional experience

Associate Professor at University Cadi Ayyad, ENSA, Marrakech, Morocco 2005-present. Associate 
Researcher at Politecnico of Torino, Italy (2001-2005). 

Recruited in the European Research Project with Title: Using Mathematical Modeling and Computer 
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Simulation to Improve Cancer Therapy (HPRN-CT-2000-00105) (see the WEB page: http://calvino.polito.
it/biomat). 

Teaching and Research Position(Attaché temporaire à l’enseignement et à la recherche, University Evry, 
France (1999-2001). Teaching-Assistant at University of Evry, France (1996-1999). 

3.5. Participation in Research Projects 

• Research Training Network (RTN) Project: Using Mathematical Modelling and Computer Simulation to 
Improve Cancer Therapy, 2001-2005. 

• Research Project funded by The Hassan Il Academy of Sciences and Technology, (Morocco)-University 
Cadi Ayyad: Mathematical methods for modelling and simulation for cancer, 2011-2016 (Coordinator). 

4. Scientific Publications 

Refereed Articles 

1. BELLOUQUID A., Existence Globale et Comportement Asymptotique du Probl`eme de Cauchy pour le 
Modèle de BGK, C.R. Acad. Sci. Paris, t. 321, Série I, 1637-1640, (1995). 

2. BELLOUQUID A., The Hydrodynamical Limit of the Carlemann Equation, C.R. Acad. Sci. Paris, t.321, 
Série I, 655-658, (1995). 

3. BELLOUQUID A., Limite Asymptotique pour le Mod`ele de BGK, C. R. Acad. Sci. Paris, t. 324, S´erie 
I, 951-956, (1997). 

4. BELLOUQUID A., Limite Hydrodynamique de Quelques Mod`eles de la Théorie Cinétique Discrète, 
C.R. Acad. Sci. Paris, t. 330, Srie I, 951-956, (2000). 

5. BELLOUQUID A., The Hydrodynamical Limit of the Non Linear Boltzmann Equation. Transp. Theory 
Statist. Phys., 28 (1), 25-57, (1999). 

6. BELLOUQUID A., The Incompressible Navier-Stokes Limit for the Nonlinear Discrete Velocity Kinetic 
Equations. J. Nonlinear Math. Phys., 9, 426-445 (2002). 

7. BELLOUQUID A., From Microscopic to Macroscopic: Asymptotic Analysis of The Broadwell Model 
Towards The Wave equation. Math. Comp. Modeling, 36, 1169-1181, (2002). 

8. BELLOUQUID A., Diffusive Limit for the Nonlinear Discrete Velocity Models, Math. Models Meth. 
Appl. Sci., 13, 33-58, (2003). 

9. BELLOUQUID A., Global Existence of BGK Model for a Gas With Non Constant Cross Section, Transp. 
Theory Statist. Phys., 32 (2), 157-184, (2003). 

10. BELLOMO N., BELLOUQUID A, DE ANGELIS E., Lectures Notes, On the Modeling of the Immune 
Competition by Generalized Kinetic Boltzmann Models -A Review and Research Perspectives, Math. 
Comp. Modeling, 37, 65-86, (2003). 

11. BELLOUQUID A., DELITALA M., Kinetic (Cellular) Models of Cell Progression and Competition 
with Immune System. Z. Agn. Math. Phys (ZAMP), 55, 295-317, (2004). 

12. BELLOMO N., BELLOUQUID A., From a Class of Knetics Models to The Macroscopic Equations 
for Multicellular Systems in Biology, Discrete and Continuous Dynamical Systems., 4(1), 59-80, (2004). 
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13. BELLOUQUID A., The Compressible Euler and Acoustic Limit for Kinetic Models. Math. Models 
Meth. Appl. Sci., 6 (14), 853-882, (2004). 

14. BELLOUQUID A., The Linearized Compressible Euler for The Discrete Boltzmann Equation, 
Electronic Journal Differential Equation, 104, 1-18, (2004). 

15* . BELLOMO N., BELLOUQUID A., DELITALA M., Mathematical Topics on the modelling of 
Multicellular Systems in the competition between Tumor and Immune cells, Math. Models Meth. Appl. 
Sci. 8 (15), 1-51, (2004). 
*(Highly cited paper in the field of Mathematics, May 2006). 
http://www.esi-topics.com/nhp/2006/may-06-NicolaBellomo.html 

16* BELLOUQUID A., DELITALA M., On a Mathematical Kinetic Theory toward Modeling Complex 
Systems in Biology. Math. Models Meth. Appl. Sci., 15, 1-28, (2005). 
*(Highly cited paper in the field of Mathematics, December 2006).
 http://www.esi-topics.com/fbp/2006/december06-Delitala-Bellouq 

17. BELLOUQUID A., On the Asymptotic Analysis of Boltzmann Equation Towards the Stokes Equations, 
Applied Mathematics Letters, 18(12), 1400-1407, (2005). 

18. BELLOMO N., BELLOUQUID A., On the onset of nonlinearity for diffusion models of binary mixtures 
of biological materials by asymptotic analysis, Int. J. Nonlinear Mechanics, 41, 281–293, (2006). 

19. BELLOMO N., BELLOUQUID A., On the Derivation of Macroscopic Equations In the Mathematical 
Kinetic Theory of Active Particles with Discrete States, Mathematical and Computer Modelling, 44, 397-
404, (2006). 

20. BELLOMO N., BELLOUQUID A., HERRERO M., From the microscopic to macro-scopic description 
for multicellular systems and biological growing tissues, Computers and Mathematics with Applications 
53, 647-663, (2007). 

21. BELLOMO N., BELLOUQUID A., NIETO J., SOLER J., Multicellular biological growing systems: 
Hyperbolic limits towards macroscopic description, Math. Models Meth. Appl. Sci., 17, 1-18, (2007). 

22. BELLOMO N., BELLOUQUID A., DELITALA M., From the mathematical kinetic theory of actives 
particles to multiscale modelling of Complex Biological Systems, Mathematical Comp. Modeling, 47, 
687-698, (2008). 

23. BELLOMO N., BELLOUQUID A., SOLER J., On the derivation of hyperbolic macroscopic tissues 
models from the mathematical kinetic theory for active particles, Mathematical and Comp. Modeling, 49, 
2083-2093, (2009). 

24. BELLOUQUID A., On the global existence for the Kac Model with some external force, Mathematical 
Comp. Modeling, 49, 1531-1538, (2009). 

25. BELLOMO N., BELLOUQUID A., On the Derivation of Macroscopic Hyperbolic Equations for Binary 
Multicellular Growing Mixtures, Computer and Mathematics with Applications, 57,744-756, (2009). 

26. BELLOMO N., BELLOUQUID A., On the derivation of macroscopic tissue equations from hybrid 
models of the kinetic theory of multicellular growing systems- The effect of the global equilibrium, 
Nonlinear Analysis: Hybrid Systems, 3, 215-224, (2009). 

27. BELLOMO N., BELLOUQUID A., NIETO J., SOLER J., Complexity and Mathematical Tools 
Towards the modelling Multicellular Growing System In Biology, Mathe-matical and Comp. Modelling, 51,   
441-451, (2010). 
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28* . BELLOMO N., BELLOUQUID A., NIETO J., SOLER J., Multiscale Derivation of biological Tissues 
Models For Mixtures of Multicellular Growing Systems : Application to Flux-Limited Chemotaxis, Math. 
Models Meth. Appl. Sci., Appl. Sci. Vol. 20, No. 7, 1-29, (2010). 

29. BELLOUQUID A., On the asymptotic analysis of the BGK model toward the incompressible linear 
Navier-Stokes equation, Math. Models Meth. Appl. Sci., Vol. 20, No. 8, 1299 -1318, (2010). 

30. BELLOUQUID A., BIANCA C., Modeling aggregation-fragmentation phenomena by kinetic theory 
for actives particles Models, Mathematical and Comp. Modeling, 52, 802-813, (2010). 

31. BELLOUQUID A., ANGELIS DE., From Kinetic Models of Multicellular Growing Systems to 
Macroscopic Biological Tissue Models, Nonlinear Analysis: Real World. Applications, 12, 1111–1122, 
(2011). 

32. BELLOMO N., BELLOUQUID A., On the modeling of crowd dynamics looking at the beautiful shapes 
of swarms, Networks and Heterogeneous Media, (6), 383-399, (2011). 

33. BELLOUQUID A., DELITALA M., Asymptotic limits of a discrete kinetic theory model of vehicular 
traffic, Applied Mathematics Letters., 24(5), 672-678, (2011). 

34* . BELLOMO N., BELLOUQUID A., NIETO J., SOLER J., On the asymptotic theory from microscopic 
to macroscopic growing tissus models: An overview with perspectives, Models Meth. Appl. Sci. and 
Methods in Applied Sciences, (12), 1-37, (2012). 

35* . BELLOUQUID A., ANGELIS DE., FERMO L., Towards the modeling of vehicular traffic as a 
complex system: a kinetic theory approach, Math. Models Methods Appl.Sci (22), 1-35, (2012). 

36. AFRAITES L, ATLAS A, BELLOUQUID A, CH-CHAOUI M, Modelling the complex immune system 
response to cancer cells, Mathematics in Engineering, Science and Aerospace, (3), 269-283, (2012).

37. BELLOUQUID A, An asymptotic Analysis From Kinetic to Macroscopic Scale For Multicellular 
Growing Systems, Mathematics in Engineering, Science and Aerospace, (3), 259-268, (2012). 

38. BELLOMO N., BELLOUQUID A., Global solution to the Cauchy problem for discrete velocity models 
of vehicular traffic, J. Differential Equations, 252, 1350-1368, (2012). 

39. BELLOUQUID A, CALVO J, NIETO J, SOLER J, On the Relativistic BGK-Boltzmann Model: 
Asymptotics and Hydrodynamics, J. Stat Phys, 284-316, (2012). 

40* . BELLOUQUID. A, E. De ANGELIS, KNOPPOF. D, From The Modeling of The Immune Hallamrks 
of Cancer To A Black Swan In Biology, Models Meth. Appl. Sci.and Methods in Applied Sciences, DOI: 
10.1142/S0218202512500650, (2013). 

41. BELLOMO. N, BELLOUQUID. A, NIETO. J, SOLER. J, Modeling chemotaxis from L2–closure 
moments in kinetic theory of active particles, Discrete and Continuous Dynamical Systems -Series B, Vol 
18, N 4, (2013). 

42. BELLOUQUID. A, A Micro-Macro Scaling for Flux Limited Models: Commentary to the paper 
“Morphogenetic action through flux-limited, Phys Life Rev, 10(4), 477-478 (2013). 

43. BELLOUQUID A, CALVO J, NIETO J, SOLER J, Hyperbolic versus Parabolic Asymptotics in Kinetic 
Theory toward Fluid Dynamic Models, SIAM J. Appl. Math., 73(4), 1327-1346, (2013). 

44. BELLOMO. N, BELLOUQUID. A, KNOPPOF. D, On the multiscale models of pedestrian crowds-
From mesocopic to macroscopic, SIAM, Multiscale Modelling, 11(3), 943-963, (2013). 
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45. BELLOUQUID. A, Mathematical tools towars the modeling of biological system, International journal 
of cancer research and disgnosis, 1(1), 1-4, (2013). 

46. BELLOMO. N, BELLOUQUID. A, NIETO. J, SOLER. J, On the multiscale modelling of vehicular 
traffic, from kinetic to hydrodynamics, Discrete and Continuous Dynamical Systems -Series B, 19 (7), 
1869-1888, (2014). 

47. BELLOMO. N, BELLOUQUID. A, On the derivation of Angiogenesis models: from the micro- to 
macro-scale, Mathematics and Mechanics of Solids, 19 (8), 1-13, (2014). 

48. AFRAITES. L, BELLOUQUID. A, Global optimization approaches to parameters identification in an 
immune competition model, Communications in Applied and Industrial Mathematics, 468-486, (2014). 

49. BELLOUQUID. A, CH-CHAOUI. M, Asymptotic analysis of a nonlinear integro-differential system 
modeling the immune response, Computers and Mathematics with Applications, 68, 905-914, (2014). 

50. BELLOMO. N, BELLOUQUID. A, Derivation of new chemotaxis models by asymptotic analysis 
of kinetic models for large binary cell mixtures, Frontiers in Science and Engineering (An International 
Journal Edited by Hassan II, Academy of Science and Technology), 4(2), 1-26, (2014). 

51. BELLOUQUID. A, From systems biology to analytic problems, Phys Life Rev, 12, 68-69, (2015). 

52. BELLOUQUID. A, NIETO. J, URRITIA. L, Global existence and asymptotic stability near equilibrium 
for the relativistic BGK Model, Nonlinear Analysis Serie A: Theory, Methods and Applications, 114, 87-
104, (2015). 
Meth. Appl. Sci.and Methods in Applied Sciences, DOI: 10.1142/S021820251550044X, (2015). 

53. BELLOMO. N, BELLOUQUID. A, TAO. Y, WINKLER. M Towards a Mathematical Theory of Keller-
Segel Models of Pattern Formation in Biological Tissues, Models  
Meth. Appl. Sci.and Methods in Applied Sciences, DOI: 10.1142/S021820251550044X, (2015). 

54. BELLOMO. N, BELLOUQUID. A On multiscale models of pedestrians crowds: from mesocopic to 
macroscopic, Journal of mathematical sciences. 13(39), (2015). 

55. BELLOUQUID. A, TAGOUDJEU. J, An asymptotic preserving scheme for kinetic models for 
chemotaxis phenomena, Accepted in Applied Numerical Mathematics, (2015). 

Books

56. BELLOUQUID A., DELITALA M., Mathematical Modelling of Complex Biological Systems. A 
Kinetic Theory Approach, Birkh¨auser-Springer, Boston (2006). 
(http://www.springer.com/sgw/cda/frontpage/0,,5-40296-72-52117598-0,00.html) 

Refereed research articles in Books 

57. BELLOMO N., BELLOUQUID A., DELITALA M., Methods and tools of math-ematical kinetic theory 
towards modelling complex biological systems. Transport phenomena and kinetic theory, 175-193, Model. 
Simul. Sci. Eng. Technol., Birkhäuser, Springer, Boston, 2007. 

58. BELLOUQUID A., DELITALA M., From kinetic theory for active particles to modelling immune 
competition. Selected topics in cancer modeling, 31-47, Model. Simul. Sci. Eng. Technol., Birkh¨auser-
Springer, Boston, 2008. 

59. BELLOMO N., BELLOUQUID A., On the modelling of vehicular traffic and crowds by kinetic theory 
of active particles. Mathematical modeling of collective behavior in socio-economic and life sciences, 273-
296, Model. Simul. Sci. Eng. Technol., Birkhäuser-Springer, Boston, 2010. 
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60. BELLOMO N., BELLOUQUID A., DE ANGELIS E., On the derivation of Biological Tissue 
Models From Kinetics Models of Multicellular Growing models. B. Albers, Ed., Continuous Media with 
Microstructure, 131-145, Springer Berlin Heidelberg, 2010. 

5. A list of the most significant publications 

1. BELLOMO. N, BELLOUQUID. A, TAO. Y, WINKLER. M Towards a Mathematical Theory of Keller-
Segel Models of Pattern Formation in Biological Tissues, Models Meth. Appl. Sci.and Methods in Applied 
Sciences, DOI: 10.1142/S021820251550044X, (2015). 

2. BELLOUQUID. A, NIETO. J, URRITIA. L, Global existence and asymptotic stability near equilibrium 
for the relativistic BGK Model, Nonlinear Analysis Serie A: Theory, Methods and Applications, 114, 87-
104, (2015). 

3. BELLOMO. N, BELLOUQUID. A, NIETO. J, SOLER. J, On the multiscale mod-elling of vehicular 
traffic, from kinetic to hydrodynamics, Discrete and Continuous Dy-namical Systems -Series B, 19 (7), 
1869-1888, (2014). 

4* . BELLOUQUID. A, E. De ANGELIS, KNOPPOF. D, From The Modeling of The Immune Hallamrks 
of Cancer To A Black Swan In Biology, Models Meth. Appl. Sci.and Methods in Applied Sciences, DOI: 
10.1142/S0218202512500650, (2013). 

5. BELLOUQUID A, CALVO J, NIETO J, SOLER J, Hyperbolic versus Parabolic Asymptotics in Kinetic 
Theory toward Fluid Dynamic Models, SIAM J. Appl. Math., 73(4), 1327-1346, (2013). 

6. BELLOMO. N, BELLOUQUID. A, NIETO. J, SOLER. J, Modeling chemotaxis from L2–closure 
moments in kinetic theory of active particles, Discrete and Continuous Dynamical Systems -Series B, Vol 
18, N 4, (2013). 

7. BELLOMO. N, BELLOUQUID. A, KNOPPOF. D, On the multiscale models of pedestrian crowds-From 
mesocopic to macroscopic, SIAM, Multiscale Modelling, 11(3), 943-963, (2013). 

8* . BELLOMO N., BELLOUQUID A., NIETO J., SOLER J., On the asymptotic theory from microscopic 
to macroscopic growing tissus models: An overview with perspectives, Models Meth. Appl. Sci. and 
Methods in Applied Sciences, (12), 1-37, (2012). 

9. BELLOUQUID A, CALVO J, NIETO J, SOLER J, On the Relativistic BGK-
Boltzmann Model: Asymptotics and Hydrodynamics, J. Stat Phys, 284-316, (2012). 

10* . BELLOUQUID A., ANGELIS DE., FERMO L., Towards the modeling of vehicular trafic as a 
complex system: a kinetic theory approach, Math. Models Methods Appl.Sci (22), 1-35, (2012). 

11. BELLOMO N., BELLOUQUID A., Global solution to the Cauchy problem for discrete velocity models 
of vehicular traffic, J. Differential Equations, 252, 1350-1368, (2012). 

12. BELLOUQUID A., ANGELIS DE., From Kinetic Models of Multicellular Growing Systems to 
Macroscopic Biological Tissue Models, Nonlinear Analysis: Real World. Applications, 12, 1111–1122, (2011). 

13*. BELLOMO N., BELLOUQUID A., NIETO J., SOLER J., Multiscale Derivation of biological Tissues 
Models For Mixtures of Multicellular Growing Systems : Application to Flux-Limited Chemotaxis, Math. 
Models Meth. Appl. Sci., Appl. Sci. Vol. 20, No. 7, 1-29, (2010). 
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14. BELLOMO N., BELLOUQUID A., NIETO J., SOLER J., Multicellular biological growing systems: 
Hyperbolic limits towards macroscopic description, Math. Models Meth. Appl. Sci., 17, 1-18, (2007). 

15. BELLOMO N., BELLOUQUID A., On the onset of nonlinearity for diffusion models of binary mixtures 
of biological materials by asymptotic analysis, Int. J. Nonlinear Mechanics, 41, 281–293, (2006). 

16*. BELLOUQUID A., DELITALA M., On a Mathematical Kinetic Theory toward Modeling Complex 
Systems in Biology. Math. Models Meth. Appl. Sci., 15, 1-28, (2005). 

17*. BELLOMO N., BELLOUQUID A., DELITALA M., Mathematical Topics on the modelling of 
Multicellular Systems in the competition between Tumor and Immune cells, Math. Models Meth. Appl. 
Sci. 8 (15), 1-51, (2004). 

18. BELLOUQUID A., The Compressible Euler and Acoustic Limit for Kinetic Models. Math. Models 
Meth. Appl. Sci., 6 (14), 853-882, (2004). 

19. BELLOUQUID A., Global Existence of BGK Model for a Gas With Non Constant Cross Section, 
Transp. Theory Statist. Phys., 32 (2), 157-184, (2003). 

20. BELLOUQUID A., The Hydrodynamical Limit of the Non Linear Boltzmann Equation. Transp. Theory 
Statist. Phys., 28 (1), 25-57, (1999). 

6. Information on previous awards, honours, recognition received by Prof. A. 
BELLOUQUID 

• Member of the Hassan II Academy of Science and Technology, Morocco. 

• Grand Prize for Invention and Research in Science and Technology, Morocco, 2009-Edition. 

• Thomson ESI December 2006 and January 2007 -Special Topics: Hot Paper on Mathematics for the 
article: Mathematical Methods and Tools of Kinetic Theory towards Modelling Complex Biological 
Systems. Interview available at www.esi-topics.com/fbp/december06-delitala-Bellouq.html. 

• Thomson ESI May 2006-Special Topics: Hot Paper on Mathematics for the article: Mathematical 
Topics on the modeling of Multicellular Systems in the competition between Tumor and Immune cells. 
Interview available at: www.esi-topics.com/nhp/2006/ may-06-NicolaBellomo.html. 

• Papers [15, 16, 28, 34, 35, 40] are “highly cited”, namely they are above the top 1% threshold of 
citations for papers published on journals of mathematics. 
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Dedicated to the memory of Abdelghani Bellouquid

Abstract

This paper deals with the derivation of macroscopic tissue models, for
binary mixtures of multi-cellular systems, from the underlying description
delivered, by methods of the kinetic theory. The derivation refers to the
parabolic scaling by asymptotic methods within the framework of the
Hilbert perturbation method in classical kinetic theory, developed to the
case of active particles.

1 Introduction

Parabolic diffusion models can be obtained by a phenomenological approach,
where the local growth of a physical substance, in the elementary space volume
is equated to net flux, due to the gradients of a certain substance or physical
quantity. Different models can be obtained according to suitable phenomenolog-
ical assumptions on the relation between fluxes and gradients. Linear models
are obtained when the link is a direct proportionality, while nonlinear mod-
els correspond to relationships depending on the density and gradients of the
aforementioned quantity.

The term cross diffusion for a binary mixture is used when both substances
contribute to the diffusion of each of them, while the term transport-diffusion
is used when gradients contribute also to the transport of the two substances.
As it is known, the approach of continuum mechanics leads to the derivation
of models at the macroscopic scale starting from conservation, or equilibrium

2010Mathematics Subject Classification 35Q20, 82C22, 92B05
Keywords: kinetic theory, multicellular systems, micro-macro asymptotic, cross diffusion mod-
els
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equations, involving locally averaged quantities suitable to describe the state of
the system.

A general structure of cross diffusion models is as follows:




∂tw1(t, x) = ∇x · J1(t, x, w1, w2) +H1(t, x, w1, w2),

∂tw2(t, x) = ∇x · J2(t, x, w1, w2) +H2(t, x, w1, w2),
(1)

where w1 = w1(t, x) and w2 = w2(t, x) denote the density, at position x ∈ Ω ⊆
R3, and time t ∈ R+, of the two substances, J1 and J2 representing the fluxes
of w1 and w2, and H1 and H2 are two source terms, which can model different
phenomena such as production and/or degradation rates, reaction terms, and
many others.

Models derived within this framework have been obtained, e. g. diffusion in
multicellular systems, population dynamics, heat transfer phenomena. On the
other hand, a criticism is that conservation equations need phenomenological
models on the material behavior of the system. These models are generally valid
at equilibrium, while diffusion models should operate far from equilibrium. It is
worth mentioning, that this approach has not been limited only to applications
in biology, as the derivation has been also focusing on different classes of self-
propelled particles such car-drivers in vehicular traffic [7] and pedestrians in
human crowds [2].

Therefore an alternative approach consists in the micro-macro derivation,
where the derivation at the large scale is obtained from the underlying descrip-
tion at the microscopic scale of particles or, in the case of biological tissues, of
cells. This approach has been developed in a sequel of papers [4, 5, 6], where the
dynamics at the low scale is modeled by the kinetic theory of active particles
[9]. This equation is expanded in terms of a small parameter corresponding to
the mean distance between pair of particles, which is closed by neglecting terms
of higher order.

A typical example is the Keller and Segel [12, 13] that, despite its success-
ful ability to describe interesting biological phenomena, it shows non physical
blow up phenomena. Therefore a number of heuristic modifications have been
proposed to revise contradiction. The survey paper [8] is devoted to the math-
ematical theory of the aforementioned model, where interested readers can find
several results on the micro-macro derivation. Indeed, new models have been
suggested that are now object of an intense research activity focused on enlight-
ening their properties and predictive ability.

The micro-macro derivation is developed by modeling the dynamics at the
microscopic scale by the kinetic theory of active particles. Then, while the dis-
tance between particles is made to tend to zero, the time-space scaling generates
a small parameter corresponding to such distance. The solution is obtained by
an expansion in powers of the said parameter. A the approach developed in [3]
has allowed to derive a variety of cross diffusion model. Additional bibliography
can be found in the book [1] as well in the papers that initiated to deal with
this class of mathematical problems [14, 15, 16].

2
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(1)

where w1 = w1(t, x) and w2 = w2(t, x) denote the density, at position x ∈ Ω ⊆
R3, and time t ∈ R+, of the two substances, J1 and J2 representing the fluxes
of w1 and w2, and H1 and H2 are two source terms, which can model different
phenomena such as production and/or degradation rates, reaction terms, and
many others.

Models derived within this framework have been obtained, e. g. diffusion in
multicellular systems, population dynamics, heat transfer phenomena. On the
other hand, a criticism is that conservation equations need phenomenological
models on the material behavior of the system. These models are generally valid
at equilibrium, while diffusion models should operate far from equilibrium. It is
worth mentioning, that this approach has not been limited only to applications
in biology, as the derivation has been also focusing on different classes of self-
propelled particles such car-drivers in vehicular traffic [7] and pedestrians in
human crowds [2].

Therefore an alternative approach consists in the micro-macro derivation,
where the derivation at the large scale is obtained from the underlying descrip-
tion at the microscopic scale of particles or, in the case of biological tissues, of
cells. This approach has been developed in a sequel of papers [4, 5, 6], where the
dynamics at the low scale is modeled by the kinetic theory of active particles
[9]. This equation is expanded in terms of a small parameter corresponding to
the mean distance between pair of particles, which is closed by neglecting terms
of higher order.

A typical example is the Keller and Segel [12, 13] that, despite its success-
ful ability to describe interesting biological phenomena, it shows non physical
blow up phenomena. Therefore a number of heuristic modifications have been
proposed to revise contradiction. The survey paper [8] is devoted to the math-
ematical theory of the aforementioned model, where interested readers can find
several results on the micro-macro derivation. Indeed, new models have been
suggested that are now object of an intense research activity focused on enlight-
ening their properties and predictive ability.

The micro-macro derivation is developed by modeling the dynamics at the
microscopic scale by the kinetic theory of active particles. Then, while the dis-
tance between particles is made to tend to zero, the time-space scaling generates
a small parameter corresponding to such distance. The solution is obtained by
an expansion in powers of the said parameter. A the approach developed in [3]
has allowed to derive a variety of cross diffusion model. Additional bibliography
can be found in the book [1] as well in the papers that initiated to deal with
this class of mathematical problems [14, 15, 16].

2

Our paper develops the method for a binary mixture toward cross diffusion
models. More in detail, we first consider a binary mixture, whose dynamics
are modeled by the aforementioned kinetic theory approach, then we show how
a large variety of nonlinear cross diffusion models can be derived, where each
model corresponds to different assumptions on interactions at the microscopic
scale. In more detail, Section 2 defines the kinetic framework modeling the
mixture and presents the Hilbert method corresponding to the parabolic scaling;
Section 3 shows how a general approach leads to the derivation of a specific
model of cross diffusion chosen as a case study; Section 4 is devoted to a critical
analysis and some research perspectives to understand how the methodological
approach can be further developed.

2 A parabolic Hilbert method for binary mix-
ture

Let us consider a binary mixture of cells, or biological substances, which can be
modeled by suitable generalizations of the kinetic theory for active particles [9].
This section first defines a quite general framework to model the system, sub-
sequently defines the parabolic scaling and some technical assumptions, and
finally develops a Hilbert type method in order to derive macroscopic tissue
models from the said underling kinetic description. These topics are treated in
the next two subsections.

2.1 Kinetic framework

Let us consider binary biological mixture such that the overall state is described
by the probability distributions fi = fi(t, x, v), i = 1, 2 denoting, respectively,
the density of cell, and chemical concentration, depending on time t, position
x ∈ Ω ⊂ Rd and velocity v ∈ V ⊂ Rd, with d = 1, 2, 3. Macroscopic variables,
such as the densities n, S are given by moments of the probability distributions.
In particular, the number densities are defined, under suitable integrability con-
ditions, as follows:

n(t, x) =

∫

V

f1(t, x, v) dv, S(t, x) =

∫

V

f2(t, x, v) dv. (2)

Let us now consider a system such that the overall dynamics is modeled by
the following structure:




(
∂t + v · ∇x

)
f1 = ν1 T1[f2](f1) + µ1G1(f1, f2, v),

(
∂t + v · ∇x

)
f2 = ν2T2(f2) + µ2G2(f1, f2, v),

(3)

whereG1, G2 model the interaction between particles and are assumed to depend
on f1, f2 and v, while the operators Ti(fi) model the space dynamics by a

3
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velocity-jump process:

Ti(f) =
∫

V

[
Ti(v, v

∗)f(t, x, v∗)− Ti(v
∗, v)f(t, x, v)

]
dv∗, i = 1, 2, (4)

where Ti(v, v
∗) is the kernel probability for the new velocity v ∈ V assuming

that the previous velocity was v∗; The operators Ti may depend on f1 and f2; in
fact, we will assume that T1 depends on the population f2. The set of possible
velocities denoted by V ⊂ Rd is assumed to be bounded, radial symmetric; ν1
and ν2 denote the interaction rates.

2.2 Parabolic scaling

System (3) can be set in a dimensionless form with the introduction of a small
parameter ε such that

t −→ εt, ν1 = ν2 =
1

ε
, µ1 = µ2 = ε.

Then, (3) is written as follows:



(
ε∂t + v · ∇x

)
fε
1 = 1

εT1[f
ε
2 ](f

ε
1 ) + εG1(f

ε
1 , f

ε
2 , v),

(
ε∂t + v · ∇x

)
fε
2 = 1

εT2(f
ε
2 ) + εG2(f

ε
1 , f

ε
2 , v).

(5)

These macroscopic equations can be obtained in the regime ν1, ν2 → +∞
corresponding to the asymptotic ε → 0. Some technical assumptions are needed
to achieve this objective.

Assumption 2.1. The turning operator T1[f2] is supposed to be decomposed
as follows:

T1[f2](g) = T 0
1 (g) + εT 1

1 [f2](g), (6)

where T i
1 for i = 0, 1 is given by

T i
1 (g) =

∫

V

[
T i
1g(t, x, v

∗)− T i
1
∗
g(t, x, v)

]
dv∗, (7)

with T i
1
∗
= T i

1(v
∗, v). Therefore, the dependence on f2 of the operator T 1

1 [f2]
stems from T 1

1 , while we suppose that T 0
1 is independent on f2.

Assumption 2.2. We assume that the turning operators T1 and T2 satisfy the
following equalities

∫

V

T1(g)dv =

∫

V

T 0
1 (g)dv =

∫

V

T 1
1 [f2](g)dv =

∫

V

T2(g)dv = 0. (8)

Assumption 2.3. There exists a bounded velocity distribution Mi(v) > 0,
i = 1, 2 independent of t, x, such that the detailed balance

T 0
1 (v, v

∗)M1(v
∗) = T 0

1 (v
∗, v)M1(v), (9)

4
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and
T2(v, v

∗)M2(v
∗) = T2(v

∗, v)M2(v) (10)

holds. Moreover, the flow produced by these equilibrium distributions vanishes,
and Mi are normalized, i.e.

∫

V

vMi(v)dv = 0,

∫

V

Mi(v)dv = 1, i = 1, 2. (11)

In addition, the kernels T 0
1 (v, v

∗) and T2(v, v
∗) are supposed to be bounded,

and there exists a constant σi > 0, i = 1, 2, such that

T 0
1 (v, v

∗) ≥ σ1M1(v), T2(v, v
∗) ≥ σ2M2(v), (12)

for all (v, v∗) ∈ V × V , x ∈ Ω and t > 0.

The above assumptions yield the following Lemma

Lemma 1. Let now L1 = T 0
1 , L2 = T2 and suppose that Assumptions 2.2

holds. Then, the following properties of the operators L1 and L2 hold true:

i) The operator Li is self-adjoint in the space L2

(
V,

dv

Mi

)
.

ii) For f ∈ L2, the equation Li(g) = f , i = 1, 2, has a unique solution

g ∈ L2

(
V,

dv

Mi

)
, which satisfies

∫

V

g(v) dv = 0 if and only if

∫

V

f(v) dv = 0.

iii) The equation Li(g) = vMi(v), i = 1, 2, has a unique solution that we call
θi(v).

iv) The kernel of Li is N(Li) = vect(Mi(v)), i=1,2.

2.2.1 A Hilbert method toward hydrodynamical limits

Let us consider a general form of the scaled transport equation (5), that by
using (6), can be written as follows:





(
ε2∂t + εv · ∇x

)
f1 = T 0

1 (f1) + εT 1
1 [f2](f1) + ε2G1(f1, f2, v),

(
ε2∂t + εv · ∇x

)
f2 = T2(f2) + ε2G2(f1, f2, v).

(13)

In order to develop asymptotic analysis of Eq.(13), additional assumptions
on the operator T 1

1 , and Gi are needed.

Assumption 2.4. We assume that the turning operators T 1
1 and the interaction

terms G1 and G2 satisfy the following asymptotic behavior:

T 1
1 [g + εh+ ε2f ] = T 1

1 [g] + εR1
1[g, h, f ] +O(ε2), ∀g, h, f, (14)

5
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and

Gi(f + εg, h+ εq, v) = Gi(f, h, v) +O(ε), ∀f, g, h, q, i = 1, 2. (15)

Then, (8) rapidly yields:

∫

V

R1
1[g, h, f ](k)dv = 0, ∀k. (16)

Since we are only interested in the solution of Eq.(13) on the diffusion time
scale, we a regular perturbation expansion

f1(x, v, t) =
2∑

j=0

εjgj(x, v, t) +O(ε2),

and

f2(x, v, t) =

2∑
j=0

εjhj(x, v, t) +O(ε2).

Then the following sequence of systems follow by comparing terms of equal
order in εj for j = 0, 1, 2:

ε0 :




T 0
1 (g0) = 0,

T2(h0) = 0,
(17)

ε1 :




T 0
1 (g1) = v · ∇g0 − T 1

1 [h0](g0),

T2(h1) = v · ∇h0,
(18)

ε2 :




T 0
1 (g2) = ∂tg0 + v · ∇g1 − T 1

1 [h0](g1)−G1(g0, h0, v)
− R1

1[h0, h1, h2](g0),

T2(h2) = ∂th0 + v · ∇h1 −G2(g0, h0, v).

(19)

The first equation (17) implies that g0 ∈ vect(M1(v)) and h0 ∈ vect(M2(v)),
therefore ∃n(t, x), and ∃S(t, x) such that

g0 = M1n, and h0 = M2S. (20)

From (18), we conclude that solvability conditions are satisfied, therefore
g1 and h1 are given by





g1 = (T 0
1 )

−1(v.∇g0)− (T 0
1 )

−1(T 1
1 [h0](g0)),

h1 = (T2)−1(v.∇h0).
(21)

6
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The calculation of g2 and h2 are obtained from the solvability conditions
at O(ε2), which are given by the following:



∫

V

(
∂tg0 + v · ∇g1 − T 1

1 [h0](g1)−G1(g0, h0, v)−R1
1[h0, h1, h2](g0)

)
dv = 0,

∫

V

(
∂th0 + v.∇h1 −G2(g0, h0, v)

)
dv = 0.

(22)
Using (8), (16) and (20), Eqs.(22), can be rewritten as follows:




∂tn+
⟨
v · ∇(T 0

1 )
−1(vM1 · ∇n)

⟩
−

⟨
v · ∇(T 0

1 )
−1(T 1

1 [M2 S](M1 n))
⟩

−⟨G1(M1 n,M2 S, v)⟩ = 0,

∂tS +
⟨
v · ∇(T2)−1(vM2 · ∇S)

⟩
− ⟨G2(M1 n,M2 S, v)⟩ = 0.

(23)

As T 0
1 and T2 are self-adjoint operators in L2(V, dv

M1(v)
) and L2(V, dv

M2(v)
),

one has the following computations:

⟨
v · ∇x(T 0

1 )
−1(vM1 · ∇xn)

⟩
= divx

(
⟨v ⊗ θ1(v)⟩ · ∇xn

)
,

⟨
v · ∇x(T2)−1(vM2 · ∇xS)

⟩
= divx

(
⟨v ⊗ θ2(v)⟩ · ∇xS

)
,

⟨
v · ∇x(T 0

1 )
−1(T 1

1 [M2(v)S](M1(v)n))
⟩
= divx

⟨
θ1(v)

M1(v)
nT 1

1 [M2(v)S](M1(v))

⟩
,

where θ1 and θ2 are given in Lemma 1.
Therefore, the macroscopic model (23) can be written as follows:




∂tn+ divx (nα(S)−D1 · ∇xn) = H1(n, S),

∂tS − divx(D2 · ∇xS) = H2(n, S),
(24)

where D1, D2, and α(S) are, respectively, given by

D1 = −
∫

V

v ⊗ θ1(v)dv, D2 = −
∫

V

v ⊗ θ2(v)dv, (25)

and

α(S) = −
∫

V

θ1(v)

M1(v)
T 1
1 [M2(v)S](M1(v))dv, (26)

while H1(n, S) and H2(n, S) are given by the following:

H1(n, S) =

∫

V

G1(M1n,M2S, v)dv, (27)

and

H2(n, S) =

∫

V

G2(M1n,M2S, v)dv. (28)

7
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3 Derivation of Cross Diffusion Models

This section shows how the theoretical approach proposed in Section 2, specif-
ically the mathematical structure (14), can lead to the derivation of a cross
diffusion model selected as a possible example.

Let us consider the case where the set for velocity is the sphere of radius
r > 0, V = rSd−1, and let (f1, f2) be a solution of (13), where we assume that

T 0
1 (v, v

′) =
σ1

| V |
, T2(v, v

′) =
σ2

| V |
, with σ1, σ2 > 0,

and

Mi(v) =
1

| V |
, i = 1, 2.

Then one has:

T 0
1 (g) = −σ1

(
g − ⟨g⟩

| V |

)
, T2(g) = −σ2

(
g − ⟨g⟩

| V |

)
. (29)

Hence, Assumptions 2.2 and 2.3 are satisfied.
Let now

T 1
1 [f2] = K(S, v, v∗) · ∇xf2, (30)

where K(S, v, v∗) is a vector valued function, and

G1 = f1

(
a0 +

a1∫
V
M2

1 dv
f1 +

a2
|Ω|

∫

Ω

ndx

)
, G2 = f1 − f2. (31)

Then T 1
1 [f2] satisfies (8), (14), G1 and G2 satisfies (15).

The terms g1, h1 given by (21) can be computed as follows:

T 1
1 [h0](g0) =

n

| V |2
Φ(S, v) · ∇xS,

with

Φ(S, v) =

∫

V

(K(S, v, v⋆)−K(S, v⋆, v))dv⋆, with

∫

V

Φ(S, v)dv = 0.

Hence

(T 0
1 )

−1(T 1
1 [h0](g0)) = − 1

σ1
T 1
1 [h0](g0),

while g1, h1 are given by

g1 = − 1

σ1 | V |
v · ∇xn+

n

σ1 | V |2 Φ(S, v) · ∇xS
, (32)

and

h1 = − 1

σ2 | V |
v · ∇xS. (33)

8



23

Developments of the Hilbert Methods in the Kinetic Theory for Active Particles:...N. Bellomo and N. Chouhad

Frontiers in Science and Engineering - Vol. 6 - n° 1 - 2016
An International Journal Edited by The Hassan II Academy of Science and Technology

In the same way, R1
1[h1](g0) is computed as follows:

R1
1[h1](g0) =

n

| V |

∫

V

(
K(S, v, v⋆) · ∇xh1(v)−K(S, v⋆, v) · ∇xh1(v

⋆)

)
dv⋆

=
n

| V |2 σ2
divx

((
⟨v⋆ ⊗K(S, v⋆, v)⟩v⋆ − ⟨v ⊗K(S, v, v⋆)⟩v⋆

)
· ∇xS

)
.

The solutions θ1(v), θ2(v) of T 0
1 (θ1(v)) = vM1(v), and T2(θ2(v)) = vM2(v)

are given by

θ1(v) = − 1

| V | σ1
v, θ2(v) = − 1

| V | σ2
v.

Therefore the diffusion tensors D1 and D2 are isotropic and are given by:

D1 =
1

| V | σ1

∫

V

v ⊗ vdv =
r2

σ1d
I, D2 =

1

| V | σ2

∫

V

v ⊗ vdv =
r2

σ2d
I. (34)

Equation (30) yields:

T 1
1 [M2S](M1) = ψ(S, v) · ∇xS,

where

ψ(S, v) =
1

| V |2

∫

V

(
K(S, v, v∗)−K(S, v∗, v)

)
dv∗.

Finally, α(S) in (26) is given by

α(S) = χ(S) · ∇xS, (35)

where the chemotactic sensitivity χ(S) is given by the matrix

χ(S) =
1

σ1

∫

V

v ⊗ ψ(S, v)dv. (36)

Moreover, from (31), one gets:

H1(n, S) = n(a0 + a1n+
a2
|Ω|

∫

Ω

ndx), H2(n, S) = n− S. (37)

Finally, using (24), (34)-(35) and (37):




∂tn+ divx(nχ(S) · ∇xS) = δ∆n+ n(a0 + a1n+ a2

|Ω|
∫
Ω
ndx),

∂tS = µ∆S + n− S,

(38)

where the corresponding diffusion coefficients for the cells and chemical concen-
trations are given by:

δ =
r2

σ1d
, µ =

r2

σ2d
,

and the chemotaxis sensitivity χ is given by (36).

9
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4 Closure

The Hilbert method, which is well known in the classical kinetic theory, has been
developed to obtain hydrodynamic equations from the underlying description
delivered by the Boltzmann equation. Our paper has shown how this method
can be developed, in the case of parabolic limit, to derive macroscopic cross dif-
fusion models. The approach is quite general and can be further developed to
deal with the deviation of different types of models at the large scale such as pop-
ulation dynamics, multicellular dynamics including proliferative and destructive
dynamics. An interesting field of applications consists in deriving macro scale
models in models that include mutations and selection, hence systems with
variable number of equations. Therefore, our paper appears to provide the con-
ceptual framework for a perspective research plan focused on the derivation of
tissue equations from the underlying description at the microscopic scale.

References

[1] J. Banasiak and M. Lachowicz, Methods of Small Parameter in
Mathematical Biology, Series: Modeling and Simulation in Science,
Engineering and Technology, Birkhäuser, Boston, (2014).
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FROM THE DYNAMICS OF CHARGED PARTICLES

TO A REGULARIZED VLASOV-MAXWELL SYSTEM
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Abstract. The present paper establishes the mean-field limit of the Abraham
system for a system of identical charged particles subject to the electromag-
netic interaction. This mean-field limit leads to a regularized variant of the
relativistic Vlasov-Maxwell system. The result obtained here is similar to the
one obtained in [F. Golse, Commun. Math. Phys. 310 (2012), 789–816], but
is obtained by a purely Eulerian description of the particle dynamics.

In memory of Abdelghani Bellouquid

1. Introduction

In 1977, K. Braun and W. Hepp [3] established the mean-field limit for a N -
particle system leading to a regularized variant of the Vlasov-Poisson model where
the Coulomb potential is replaced with a smooth (at least C2) function. Their
analysis was based on earlier contribution [15] by H. Neunzert and J. Wick, who
studied particle methods for the Vlasov-Poisson system.

The result obtained by Braun and Hepp can be summarized as follows: assuming
that the particle interaction force is Lipschitz continuous, the weak convergence
of the initial phase-space distribution of particles is propagated by the dynamics
of the regularized Vlasov equation. However, Braun and Hepp do not provide a
convergence rate for the mean-field limit. This was done by R. Dobrushin [4] in
1979, who estimated the rate of convergence in that limit in terms of the Monge-
Kantorovich distance by a very clever argument. Without diminishing the merits
of Dobrushin’s lucid analysis of the mean-field limit, it should be mentioned that
the bounded Lipschitz distance, which is equal to the Monge-Kantorovich distance
of exponent 1 by the Kantorovich duality theorem [19], already appears in the work
of Braun-Hepp (see formulas (2.8)-(2.9) in [3]).

While either the Braun-Hepp and the Dobrushin results apply only to Lipschitz
continuous interaction force field, the most interesting case is that of the Coulomb
interaction, or of the Newton gravitation force. The former case corresponds to
the Vlasov-Poisson system for electrically charged particles, one of the most fun-
damental equations of plasma physics. The latter case leads to the gravitational
Vlasov-Poisson system for massive particles and is used in cosmology. Unfortu-
nately, proving the mean-field limit for the dynamics of point particles subject to
the Coulomb or the gravitational interaction remains an open problem at the time
of this writing. There has been some recent progress however in the mathemati-
cal analysis of the mean-field limit with singular interaction forces. For instance,
M. Hauray and P.-E. Jabin [9] have treated the case of interaction forces of order
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O(r−α) with 0 < α < 1 as the inter-particle distance r → 0 — notice that this falls
short of the Coulomb singularity in space dimension 2, which is O(1/r) as r → 0.

Another approach to the mean-field limit leading to the Vlasov-Poisson sys-
tem, with either the Coulomb repulsive interaction between charged particles (with
charges of the same sign), or the Newton, attractive gravitational force between
massive particles, is to start from a cutoff interaction, and to remove the cutoff as
the particle number N tends to infinity. Perhaps the most striking result in this
direction is [14, 12] — see also [9] — which can be understood as the mean-field
limit for particles of vanishing radius in the large N limit.

In view of this progress on such a fundamental issue in plasma physics, it is
natural to study the following problem.

Problem: can one derive in this way mean-field models for magnetized plasmas?
for instance, can one derive the Vlasov-Maxwell system from some appropriate
particle system?

This problem has been discussed in [7], which established the mean-field limit for
a regularized variant of the Vlasov-Maxwell system. More recently, D. Lazarovici
[13] was able to go further in the direction outlined in [7] by removing the reg-
ularization in the electromagnetic interaction as the particle number N tends to
infinity.

In the present paper, we return to the problem discussed in [7], and propose a
new and possibly simpler approach, which might be helpful to simplify, and perhaps
improve the result in [13].

2. A short review of the Braun-Hepp-Dobrushin argument

Before going further in the discussion of the problem outlined above, we recall
the main features in the Dobrushin approach [4].

Let G ≡ G(x) = G(−x) ∈ C2
b (R

d). (Typically, one should think of G as
a regularization of the Coulomb potential.) Consider the system of Newton’s
equations for a system of N identical point particles located at the positions
x1(t), . . . , xN (t) ∈ Rd:

(1) ẍi(t) +
1
N

N∑
j=1

∇xG(xi(t)− xj(t)) = 0 , i = 1, . . . , N .

Each solution t �→ (x1(t), . . . , xN (t)) ∈ RdN of the system (1) defines empirical
measures

(2) µN (t, dxdv) := 1
N

N∑
i=1

δxi(t)⊗δẋi(t) , ρN (t, dx) := 1
N

N∑
i=1

δxi(t) =

∫

Rd

µNdv .

A striking feature of the mean-field limit of the N -body problem in classical
mechanics is that t �→ (x1(t), . . . , xN (t)) is a solution of (1) if and only if the
empirical measure f is a (weak) solution of the Vlasov equation

∂tµN + v · ∇xµN − (ρN �x ∇G) · ∇vµN = 0

Because of this crucial observation, the “convergence” of the solution of the N -body
problem to a solution of the Vlasov-Poisson type equation

(3) ∂tf + v · ∇xf −
(∫

Rd

fdv �x ∇G

)
· ∇vf = 0
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is equivalent to continuous dependence of the solution of the Vlasov equation (3)
on the initial data in the weak topology of measures. This is precisely the approach
chosen in [3] — without any attempt to obtain a modulus of continuity for this
dependence.

At variance with the result obtained in [3], Dobrushin [4] obtains an estimate of
the Monge-Kantorovich distance

W1

(
f(t, ·, ·), 1

N

N∑
i=1

δxi(t) ⊗ δẋi(t)

)

in terms of its initial value at t = 0 by the Gronwall inequality involving the
Lipschitz constant of ∇G. Since the Monge-Kantorovich distance metrizes the
topology of weak convergence of probability measures (see Theorem 1 in Chapter 1
of [19]), this estimate provides a convergence rate for the mean-field limit established
in [3].

There are some conceptual difficulties in adapting Dobrushin’s program to the
Vlasov-Maxwell system:

(a) the source term in Maxwell’s systems of equations is the charge+current density,
i.e. a 4-vector, and not a probability measure,

(b) the solution of Maxwell’s system of equations involves a retarded potential, and
this may destroy the structure involving transportation of measure which is at the
core of Dobrushin’s argument.

In addition to these difficulties, there is another, perhaps more elementary ques-
tion: can one preserve the Hamiltonian structure of the Vlasov-Maxwell system by
regularization, or at least the energy conservation?

The issue (b) was partially addressed by Y. Elskens, M.K.H. Kiessling and V.
Ricci in [5]: they treated a simplified variant of the RVM system without magnetic
field, and where the electric potential is a solution to the wave equation with source
term the charge density. However, their approach circumvents the issue (a).

3. A scalar formulation of Vlasov-Maxwell

For simplicity, we consider the relativistic Vlasov-Maxwell (RVM) system for a
single species of charged particles. (Realistic models would involves several species
of charged particles, so that the complete particle system is electrically neutral.)

The unknown of the RVM system is (f,E,B), where f ≡ f(t, x, ξ) is the dis-
tribution function of the charged particles, E ≡ E(t, x) is the electric field and
B ≡ B(t, x) is the magnetic field. The position variable is x ∈ R3, while ξ ∈ R3 is
the momentum variable. The RVM system is

(4)




∂tf + v(ξ) · ∇xf + (E + v(ξ)×B) · ∇ξf = 0 ,

divx B = 0 , ∂tB + curlx E = 0 ,

divx E = ρf , ∂tE − curlx B = −jf .

In the Vlasov equation, we have used the notation

v(ξ) := ∇e(ξ) =
ξ√

1 + |ξ|2
,
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where

e(ξ) :=
√
1 + |ξ|2

is the energy density for a particle with momentum ξ. Moreover

ρf (t, x) :=

∫

R3

f(t, x, ξ)dξ

is the charge density, while

jf (t, x) :=

∫

R3

v(ξ)f(t, x, ξ)dξ

is the current density. In this formulation of the RVM system, several physical
constants (such as the speed of light, the charge and the mass of the particles and
so on) are set to 1, without loss of generality.

In this formulation of the RVM system, the source term in the field equations
(i.e. in Maxwell’s system of equations) is the 4-vector (ρf , jf )(t, x) ∈ R4, instead of
the charge density, as in the case of the Vlasov-Poisson system, where the electric
potential is a solution to the Poisson equation

−∆xφ(t, x) = ρf (t, x) .

In the latter case, the right hand side of the field equation is a probability density,
and this is a important feature in the Dobrushin approach [4].

3.1. Density of Liénard-Wiechert potential. In this section, we explain how
to address the issue (a) above. The key idea is taken from [2], and is based on
a “kinetic representation” of the solution to the Maxwell system in terms of the
density of Linard-Wiechert potential attached to each charged particle. We recall
that the electromagnetic potential created in the vacuum by a moving charged
particle can be computed at each instant of time t in a Galilean frame centered at
the position x(t) of the particle at time t, such that the velocity of that particle
at time t in that Galilean frame is 0. (The particle velocity at other instants of
time t′ �= t is in general nonzero in that Galilean frame.) The electromagnetic
potential created at time t by that particle reduces to the electrostatic (Coulomb)
potential in that frame, since the particle speed is 0 at time t. The corresponding
electromagnetic potential in an arbitrary Galilean frame is then obtained by some
appropriate Lorentz transform (see [11], §63).

The idea used in [2] involves a statistical superposition of Linard-Wiechert po-
tentials distributed under f , and can be formulated as follows.

Define uf :≡ uf (t, x, ξ) ∈ R to be the solution of

�t,xuf (t, x, ξ) = f(t, x, ξ) , uf

∣∣
t=0

= ∂tuf

∣∣
t=0

= 0 .

Assume the initial data of the RVM system is of the form

B
∣∣
t=0

= 0 , E
∣∣
t=0

= −∇φin , φin = (−∆)−1

∫

R3

f indξ ,

and define φ0 to be the solution of

�t,xφ0 = 0 , φ0

∣∣
t=0

= φin , ∂tφ0

∣∣
t=0

= 0 .

Observe that φ0 and uf are obtained by solving linear wave equations, which is a
relatively simple matter.
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Knowing φ0 and uf , one reconstructs the electromagnetic potential by the for-
mulas

φf := φ0 +

∫

R3

ufdξ , Af :=

∫

R3

v(ξ)ufdξ .

The electromagnetic field is given in terms of the electromagnetic potential by the
usual formulas:

Ef := −∂tAf −∇xφf , Bf := curlx Af .

Moreover, because of the continuity equation

∂t

∫

R3

fdξ + divx

∫

R3

v(ξ)fdξ = 0

one easily sees that the electromagnetic potential (φf , Af ) satisfies the Lorentz
gauge

∂tφf + divx Af = 0 .

3.2. Scalar formulation of RVM. In view of the representation of the electro-
magnetic field obtained in the previous section, we can recast the RVM system as
follows:

(5)




∂tf + v(ξ) · ∇xf + F [f ] · ∇ξf = 0 , f
∣∣
t=0

= f in ,

�t,xuf = f , uf

∣∣
t=0

= 0 , ∂tuf

∣∣
t=0

= 0 ,

�t,xφ0 = 0 , φ0

∣∣
t=0

= φin , ∂tφ0

∣∣
t=0

= 0 ,

F [f ] = −∇xφ0 −
∫

R3

(∇x + v(η)∂t)uf (t, x, η)dη ,

+

∫

R3

v(ξ)× curlx(uf (t, x, η)v(η))dη .

The idea of splitting the electromagnetic potential into the contribution of uf and
that of φ0, which may have appeared as somewhat arbitrary in the previous section,
can be justified as follows: only the contribution of uf in the RVM system appears
in the nonlinear part of the interaction term F [f ] · ∇ξf . It is obviously the most
critical part of the electromagnetic field to be controlled in the mean-field limit.

Let us recall that the forward fundamental solution of the wave equation in
Rt ×R3

x is given by

(6) Y :=
1t>0

4πt
δ(|x| − t) .

By Kirchhoff’s formula giving the solution of the Cauchy problem for the wave
equation in Rt ×R3

x, one has

F [f ] =

∫
K(ξ, η) �t,x f(dη) + S �x

∫
f in(dη) ,

where
K(ξ, η) := −(∇x + v(η)∂t)Y − v(ξ)× (v(η)×∇x)Y

S(t) := −∇x∂tY (t, ·) �x Γ
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and where

Γ(x) :=
1

4π|x|
is the fundamental solution of −∆ vanishing as |x| → ∞. Therefore the system (5)
can be recast as

(7)




∂tf + v(ξ) · ∇xf + F [f ] · ∇ξf = 0 , f
∣∣
t=0

= f in

F [f ] =

∫
K(ξ, η) �t,x f(dη) + S �x

∫
f in(dη)

3.3. The regularized RVM system. At this point, we seek to replace the fun-
damental solution Y by a regularized variant — much in the same way that Braun
and Hepp considered the mean-field limit for the Vlasov-Poisson system, with the
Coulomb potential replaced by a C2

b function.
Let χ ∈ C∞

c (R3) satisfy

χ(x) = χ(−x) ≥ 0 , suppχ ⊂ B(0, 1) ,

∫

R3

χ(x)dx = 1

and define the regularizing sequence χε(x) := ε−3χ(x/ε).
Set

Yε := χε �x χε �x Y

for each ε > 0.
The regularized RVM system is

(8)




∂tfε + v(ξ) · ∇xfε + Fε[fε] · ∇ξfε = 0 , fε
∣∣
t=0

= f in ,

Fε[fε] =

∫
Kε(ξ, η) �t,x fε(dη) + Sε �x

∫
f in(dη) ,

Kε(ξ, η) = −(∇x + v(η)∂t)Yε − v(ξ)× (v(η)×∇x)Yε ,

Sε(t, η) = −∇x∂tYε(t, ·) �x Γ .

One might question the need for the double convolution by χε in the regular-
ization of the RVM system above. Obviously, replacing Y by Y �x χε in (7) would
have been enough, since Y �x χε is as much a C∞ function as Yε.

However, the seemingly unnecessary complication in considering Yε instead of
Y�χε will pay its dividends when discussing the energy conservation. Observe that
the regularized force is

Fε[fε] = χε �x Eε + v(ξ)× (χε �x Bε)

with {
divx Bε = 0 ∂tBε + curlx Eε = 0 ,

divx Eε = χε �x ρfε ∂tEε − curlx Bε = −χε �x jfε .

(In other words, one convolution by χε is used in the source terms of the Maxwell
system for the electromagnetic field, while another convolution by χε is used in the
formula for the Lorentz force.)
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and where

Γ(x) :=
1

4π|x|
is the fundamental solution of −∆ vanishing as |x| → ∞. Therefore the system (5)
can be recast as

(7)




∂tf + v(ξ) · ∇xf + F [f ] · ∇ξf = 0 , f
∣∣
t=0

= f in

F [f ] =

∫
K(ξ, η) �t,x f(dη) + S �x

∫
f in(dη)

3.3. The regularized RVM system. At this point, we seek to replace the fun-
damental solution Y by a regularized variant — much in the same way that Braun
and Hepp considered the mean-field limit for the Vlasov-Poisson system, with the
Coulomb potential replaced by a C2

b function.
Let χ ∈ C∞

c (R3) satisfy

χ(x) = χ(−x) ≥ 0 , suppχ ⊂ B(0, 1) ,

∫

R3

χ(x)dx = 1

and define the regularizing sequence χε(x) := ε−3χ(x/ε).
Set

Yε := χε �x χε �x Y

for each ε > 0.
The regularized RVM system is

(8)




∂tfε + v(ξ) · ∇xfε + Fε[fε] · ∇ξfε = 0 , fε
∣∣
t=0

= f in ,

Fε[fε] =

∫
Kε(ξ, η) �t,x fε(dη) + Sε �x

∫
f in(dη) ,

Kε(ξ, η) = −(∇x + v(η)∂t)Yε − v(ξ)× (v(η)×∇x)Yε ,

Sε(t, η) = −∇x∂tYε(t, ·) �x Γ .
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However, the seemingly unnecessary complication in considering Yε instead of
Y�χε will pay its dividends when discussing the energy conservation. Observe that
the regularized force is

Fε[fε] = χε �x Eε + v(ξ)× (χε �x Bε)

with {
divx Bε = 0 ∂tBε + curlx Eε = 0 ,

divx Eε = χε �x ρfε ∂tEε − curlx Bε = −χε �x jfε .

(In other words, one convolution by χε is used in the source terms of the Maxwell
system for the electromagnetic field, while another convolution by χε is used in the
formula for the Lorentz force.)
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The variation of kinetic energy is the work of the regularized force; it can be
expressed as the integral of the inner product of the electric field by the current
density.:

(9)

d

dt

∫∫

R3×R3

e(ξ)fεdxdξ =

∫

R3

jfε · (χε �x Eε)dx

=

∫

R3

(χε �x jfε) · Eεdx

= − d

dt

∫

R3

1
2 (|Eε|2 + |Bε|2)dx .

In this chain of equalities, the first one is obtained by multiplying both sides of the
Vlasov equation with e(ξ) and integrating in x, ξ. Notice that the term involving
the magnetic field

v(ξ)× (χε �x Bε) · ∇ξfε =divξ(fεv(ξ)× (χε �x Bε))− fε(curlξ v) ·Bε

=divξ(fεv(ξ)× (χε �x Bε))

since v = ∇e. By the same token, integrating by parts shows that
∫

R3

e(ξ) (v(ξ)× (χε �x Bε) · ∇ξfε) dξ = −
∫

R3

∇e(ξ) · (v(ξ)× (χε �x Bε)) fεdξ = 0

which explains why the contribution of the magnetic field to the work of the Lorentz
force is identically 0.

The key obseration in (9) is of course the second equality, which is a consequence
of the fact that χε is even. In other words, the operator φ �→ φ � χε is self-adjoint
on L2(R3) because χε is even, as one can check by a straightforward application of
the Fubini theorem.

The following result is an almost immediate consequence of the Cauchy-Lipschitz
theorem, and of the method of characteristics for the transport equation.

Theorem 3.1. For any f in ∈ P(R3
x ×R3

ξ) satisfying
∫∫

R3×R3

e(ξ)f in(dxdξ) < ∞ ,

there exists a unique solution fε ∈ C(R+;w−P(R3
x×R3

ξ)) of the regularized RVM

system (8) satisfying
∫∫

R3×R3

e(ξ)fε(t, dxdξ) +

∫

R3

1
2 (|Eε|2 + |Bε|2)(t, x)dx = Const.

The regularization by χε � χε, i.e. the idea of replacing Y by Yε (instead of
Y �x χε, which would have been a simpler choice) has been proposed1 in [17].

4. The particle system and the mean-field limit

4.1. The particle system. We consider a system of N particles with positions
x1(t), . . . , xN (t) and momenta ξ1(t), . . . , ξN (t) ∈ R3 at time t, whose evolution is

1G. Rein kindly informed me that he learned this idea from E. Horst’s Habilitationsschrift.
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governed by the system of differential equations

(10)




ẋi =ξi

ξ̇i =
1

N

N∑
j=1

Sε(t, xj(0)) +
1

N

N∑
j=1

∫ t

0

K(t− s, xj(s), ξi(t), ηj(s))ds

Because of the finite speed of propagation for solutions of the wave equation,
this is a nonlocal delay differential equation, at variance with the particle system
for the Vlasov-Poisson case, which is an ordinary differential equation — and more
precisely a Hamiltonian system.

Lemme 4.1. The 2N -tuple t �→ (x1, ξ1, . . . , xN , ξN )(t) is a solution of the particle
system if and only if the phase-space empirical measure

fε,N =
1

N

N∑
i=1

δxi(t) ⊗ δξi(t)

satisfies



(∂t + v(ξ) · ∇x)fε,N + Fε[fε,N ] · ∇ξfε,N = 0 , fε,N
∣∣
t=0

= f in
N

Fε[fε,N ] =

∫
Kε(ξ, η) �t,x fε,N (dη) + Sε �x

∫
f in
N (dη)

In other words, the 2N -tuple t �→ (x1, ξ1, . . . , xN , ξN )(t) is a solution of the
particle system (10) if and only if the associated phase-space empirical measure is
a solution of the regularized RVM system (8). This property is obviously essential,
since it reduces the proof of the mean-field limit of the particle system (10) to the
continuous dependence of the solution of (8) in terms of the initial data for the
weak topology of probability measures.

4.2. The Monge-Kantorovich distance. We first recall the notion of Monge-
Kantorovich distance, which we shall be using in the convergence rate for the mean-
field limit. The notation P(Rd) denotes the set of Borelt probability measures on
Rd.

Definition 4.2 (Monge-Kantorovich distance W1). For µ, ν ∈ P(R6) s.t.
∫

R6

(|x|+ |ξ|)(µ(dxdξ) + ν(dxdξ)) < ∞ ,

let Π(µ, ν) be the set of π ∈ P(R6 ×R6) satisfying
∫∫

R6×R6

(φ(x, ξ) + ψ(y, η))π(dxdξdydη) =

∫

R6

φ(x, ξ)µ(dxdξ)

+

∫

R6

ψ(y, η)ν(dydη)

for each φ, ψ ∈ Cb(R
6), and

W1(µ, ν) = inf
π∈Π(µ,ν)

∫∫
(|x− y|+ |ξ − η|)π(dxdξdydη) .
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= f in
N
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∫
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∫
f in
N (dη)

In other words, the 2N -tuple t �→ (x1, ξ1, . . . , xN , ξN )(t) is a solution of the
particle system (10) if and only if the associated phase-space empirical measure is
a solution of the regularized RVM system (8). This property is obviously essential,
since it reduces the proof of the mean-field limit of the particle system (10) to the
continuous dependence of the solution of (8) in terms of the initial data for the
weak topology of probability measures.

4.2. The Monge-Kantorovich distance. We first recall the notion of Monge-
Kantorovich distance, which we shall be using in the convergence rate for the mean-
field limit. The notation P(Rd) denotes the set of Borelt probability measures on
Rd.

Definition 4.2 (Monge-Kantorovich distance W1). For µ, ν ∈ P(R6) s.t.
∫

R6

(|x|+ |ξ|)(µ(dxdξ) + ν(dxdξ)) < ∞ ,

let Π(µ, ν) be the set of π ∈ P(R6 ×R6) satisfying
∫∫

R6×R6

(φ(x, ξ) + ψ(y, η))π(dxdξdydη) =

∫

R6

φ(x, ξ)µ(dxdξ)

+

∫

R6

ψ(y, η)ν(dydη)

for each φ, ψ ∈ Cb(R
6), and

W1(µ, ν) = inf
π∈Π(µ,ν)

∫∫
(|x− y|+ |ξ − η|)π(dxdξdydη) .
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An important result (obtained by convex duality) is the following identity, due
to Kantorovich (see [19], Theorem ???).

W1(µ, ν) = sup
Lip(φ)≤1

∣∣∣∣
∫

φ(x, ξ)(µ− ν)(dxdξ)

∣∣∣∣ .

4.3. Propagation of the convergence rate. The main result in [7] is the fol-
lowing quantitative mean-field limit for the regularized RVM system (8).

Theorem 4.3. Let xin
1 , . . . , xin

N , ξin1 , . . . , ξinN ∈ B(0, R) and let f in ∈ P(R6) satisfy
supp(f in) ⊂ B(0, R). Let x1, . . . , xN , ξ1, . . . , ξN be the solution of the particle sys-
tem with initial data xin

1 . . . , xin
N , ξin1 , . . . , ξinN , and let f be the solution of RVM with

initial data f in.
Then

W1,

(
f(t),

1

N

N∑
i=1

δ(xi(t),ξi(t))

)
≤ W1

(
f in,

1

N

N∑
i=1

δ(xin
i ,ξini )

)

×(1 +A[ε, R,m])(1 + t)4 exp( 15 (1 +A[ε, R,m])(1 + t)5)

for all t ≥ 0.

The initial positions and xin
1 , . . . , xin

N , ξin1 , . . . , ξinN can be chosen by applying some
variant of the strong law of large numbers: we shall return to this later.

4.4. An Eulerian proof of Theorem 4.3. The main novelty in this paper is the
strategy used in the proof of Theorem 4.3, which avoids the slightly unpleasant
construction of the mean-field delay flow in section 4 of [7] — see in particular
Proposition 4.1 there.

The key idea is to replace the formulation of the problem in terms of character-
istics as in [7] by a purely Eulerian (PDE) approach, as in [8].

It should be mentioned2 that the idea of writing a PDE governing the dynamics of
couplings of two solutions of a porous media equation appeared earlier in a paper by
Otto and Westdickenberg [16]. Perhaps the idea of using the Eulerian formulation
on a transport equation such as the Vlasov equation was less immediate, since the
Lagrangian formulation is more natural in the context of kinetic models.

4.4.1. Propagation of couplings. First, we write a PDE governing the propagation
of couplings of two solutions of the regularized RVM system (8).

Lemme 4.4. Let f in, gin ∈ P(R6) be compactly supported, and let f and g the
solutions of RVM with initial data f in and gin respectively. Let πin ∈ Π(f in, gin),
and let π be the (weak) solution of the transport equation

(11)





∂tπ =− divx(πv(ξ))− divy(πv(η))

− divξ(πFε[f ](t, x, ξ))− divη(πFε[g](t, y, η)) ,

π
∣∣
t=0

= πin .

Then π(t) ∈ Π(f(t), g(t)) for all t ≥ 0.

2I am indebted to L. Ambrosio for this reference.
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Proof. By finite speed of propagation, suppπ(t) is compact for all t ≥ 0. Averaging
both sides of the π-equation in y, η (resp. in x, ξ) leads to the equations

∂tπ1 = − divx(π1v(ξ))− divξ(π1Fε[f ](t, x, ξ)) , π1

∣∣
t=0

= f in ,

∂tπ2 = − divy(π2v(η))− divη(π2Fε[g](t, y, η)) , π2

∣∣
t=0

= gin ,

for the first and second marginals of π(t) (corresponding to the productR6
x,ξ×R6

y,η).
Hence the marginals of π satisfy

π1 = f , and π2 = g

by uniqueness of the solution of the Cauchy problem for the transport equation in
phase-space. �

4.4.2. An integral inequality for W1(f(t), g(t)). Given t �→ π(t) ∈ P(R6 ×R6), we
define the quantity

D[π](t) :=

∫∫ ∫∫
(|x− y|+ |ξ − η|)π(t, dxdξdydη) .

Multipling each side of (11) by |x − y| + |ξ − η|, and integrating by parts in
x, ξ, y, η, we see that D[π](t) satisfies the differential equality

dD[π]

dt
=

∫∫ ∫∫
(v(ξ)− v(η)) · x− y

|x− y|
π(t, dxdξdydη)

∫∫ ∫∫
(Fε[f ](t, x, ξ)− Fε[g](t, y, η)) ·

ξ − η

|ξ − η|
π(t, dxdξdydη)

=: I + J .

(There is not difficulty with the behavior of the integrand as |x|+ |ξ|+ |y|+ |η| → ∞
since π(t) is compactly supported for all t ≥ 0, as noticed above.)

Next we estimate I and J separately. Observe that

∇v(ξ) =
(1 + |ξ|2)I − ξ ⊗ ξ

(1 + |ξ|2)3/2
so that |∇v(ξ)| ≤ 2 .

Hence

|I| ≤ 2

∫∫∫∫
|ξ − η|π(t, dxdξdydη) ≤ 2D[π](t) .

Now for J : split J as

J =

∫∫ ∫∫
(Fε[f ](t, x, ξ)− Fε[f ](t, y, η)) ·

ξ − η

|ξ − η|
π(t, dxdξdydη)

+

∫∫ ∫∫
(Fε[f ](t, y, η)− Fε[g](t, y, η)) ·

ξ − η

|ξ − η|
π(t, dxdξdydη)

=: J1 + J2 .

The term J1 is controlled by

|J1| ≤ Lip(Fε[f ])(t)

∫∫∫∫
(|x− y|+ |ξ − η|)π(t, dxdξdydη)

= ‖Fε[f ]‖W 1,∞
x

(t)D[π](t) .
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(There is not difficulty with the behavior of the integrand as |x|+ |ξ|+ |y|+ |η| → ∞
since π(t) is compactly supported for all t ≥ 0, as noticed above.)

Next we estimate I and J separately. Observe that

∇v(ξ) =
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(1 + |ξ|2)3/2
so that |∇v(ξ)| ≤ 2 .

Hence
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J =
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+

∫∫ ∫∫
(Fε[f ](t, y, η)− Fε[g](t, y, η)) ·
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=: J1 + J2 .
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∫∫∫∫
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(t)D[π](t) .
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The term J2 is controlled by

|J2| ≤
∫∫∫∫

|Fε[f ]− Fε[g]|(t, y, η)π(t, dxdξdydη)

=

∫∫
|Fε[f ]− Fε[g]|(t, y, η)g(t, dydη)

≤ ‖Fε[f − g]‖L∞(t) .

At this point, we use the Sobolev embedding theorem. Choosing m > 3
2 , there

exists a positive constant Cm such that

‖∇x,ξFε[f ]‖W 1,∞
x

(t) ≤ 3Cm(‖∇xEε[f ]‖Hm
x
+ ‖∇xBε[f ]‖Hm

x
)(t) ,

while

‖Fε[f − g]‖L∞(t) ≤ Cm(‖Eε[f − g]‖Hm
x
+ ‖Bε[f − g]‖Hm

x
)(t) .

The electromagnetic field (Eε[f ], Bε[f ]) is defined in terms of f by solving the
linear hyperbolic system

∂tEε[f ]− curlx Bε[f ] = −χε � χε �x

∫
v(ξ)f(dξ) ,

∂tBε[f ] + curlx Eε[f ] = 0 ,

with initial data

Eε[f ]
∣∣
t=0

= −∇x(−∆x)
−1χε �x χε �x

∫
f in(dξ) , Bε[f ]

∣∣
t=0

= 0 .

This system is equivalent to Maxwell’s system of equations provided that f
satisfies the continuity equation (i.e. the local conservation law of charge):

∂tρ[f ] + divx j[f ] = 0 ,

where we denote

(ρ, j)[f ] :=

∫
(1, v(ξ))f(dξ) , (ρε, jε)[f ] := χε �x χε �x (ρ, j)[f ] .

Indeed, the two missing equations, i.e. the Gauss equation and the absence of
magnetic monopoles

divx Eε[f ] = ρε[f ] , divx Bε[f ] = 0

are consequences of the identities

∂t divx Eε[f ] = − divx jε[f ] , ∂t divx Bε[f ] = 0 ,

of the continuity equation and of the initial data.
The energy balance for the above system takes the form

d

dt
(‖Eε[f ]‖2L2

x
+ ‖Bε[f ]‖2L2

x
)(t) = −2

∫
Eε[f ](t, x) · jε[f ](t, dx)

≤ 2(‖Eε[f ]‖2L2
x
+ ‖Bε[f ]‖2L2

x
)1/2(t)‖jε[f ]‖L2

x
(t) .

Applying this to (I −∆x)
m(Eε[f ], Bε[f ]), we see that

(‖Eε[f ]‖2Hm
x
(t) + ‖Bε[f ]‖2Hm

x
)1/2(t)

≤ ‖Eε[f ]‖Hm
x
(0) +

∫ t

0

‖jε[f ]‖Hm
x
(s)ds .
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With this inequality, we immediately estimate J1 as follows: for each t ≥ 0,

|J1| ≤ 3Cm(1 + t)‖χε �x χε‖Hm+1D[π](t) .

We estimate J2 in the same way:

|J2| ≤
√
2Cm‖∇(−∆)−1χε‖Hm‖χε �x ρ[f in − gin]‖L1

+
√
2Cm‖χε‖Hm

∫ t

0

‖χε �x j[f − g]‖L1(s)ds .

By Kantorovich duality, one has
∣∣χε �x ρ[f in − gin]

∣∣ ≤ ‖∇χε‖L∞W1(f
in, gin) ,

|χε �x j[f − g]| ≤ 3‖χε‖W 1,∞W1(f, g)

for all t ≥ 0. Moreover, by finite speed of propagation, one has also

supp(f in, gin) ⊂ B̄(0, R)×R3 ⇒ supp(f(t), g(t)) ⊂ B̄(0, R+ t)×R3

for all t ≥ 0. Hence

|J2| ≤ 4
√
2

3 πR3Cm‖∇(−∆)−1χε‖Hm‖∇χε‖L∞W1(f
in, gin)

+4
√
2π(R+ t)3Cm‖χε‖Hm‖χε‖W 1,∞

∫ t

0

W1(f(s), g(s))ds

Eventually, we arrive at the following differential inequality for D[π](t):

dD[π]

dt
≤ (2 + 3Cmaε(1 + t))D[π](t) + 4

√
3

3 πR3C2
ma2εW1(f

in, gin)

+4π(R+ t)3C2
ma2ε

∫ t

0

D[π](s)ds ,

where

aε := ‖χε‖Hm+1 + ‖∇(−∆)−1χε‖Hm+1 .

Integrating on [0, t] both sides of the inequality

dD[π]

dt
(t) ≤ A[ε, R,m](1 + t)3

(
D[π](t) +

∫ t

0

D[π](s)ds+D[π](0)
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5. Conclusions

We have extended the Dobrushin quantitative estimate for the mean-field limit
in the case of Lipschitz forces with infinite speed of propagation to an analogue of
the Vlasov-Maxwell system with “blob”-type charged particles.

At variance with the Vlasov-Poisson case, the analogous problem with point
charges does not seem to be physically relevant because of the difficulties with the
self-interaction in classical electrodynamics. Self-interaction is a well-identified dif-
ficulty in electrodynamics, and has been studied in depth. The interested reader is
referred in particular to chapter 2 in [18] for a mathematical description of the diffi-
culty related to the self-interaction in classical (i.e. non quantum) electrodynamics.
A more physical description of this difficulty can be found in chapter 28-4 of [6] —
see also chapter 3 in [18] for a very interesting and detailed historical discussion
on this problem. The idea of smearing the charge as done in the present paper is
due to Abraham [1], and the particle dynamics described in (10) is referred to as
“Abraham’s system”: see chapters 11 and 2.4 in [18].

Otherwise, the ultimate goal of this line of research is obviously to produce a rig-
orous justification for the RVM system on the basis of a first principle, microscopic
description of the dynamics of charged particles. (Whether the Abraham system
can be regarded as such a first principle equation for the dynamics of charged par-
ticles is of course highly debatable.) The most natural idea is of course to let the
cutoff parameter ε vanish as N → ∞. As indicated in Proposition 6.2 in [7], weak
solutions of the RVM system are limits of subsequences of the family of empirical
measures built on solutions of the Abraham system (10). While Proposition 6.2 in
[7] does not specify the rate of convergence in this limit, it can be readily estimated
from Theorem 5.1 (the main result in [7]). The best (smallest) “particle radius”
(i.e. cutoff parameter ε) obtained by using the method in [7] is found to be of

order 1/
√
lnN — which is of course too large to be of much physical relevance. At

the time of this writing, the best result on the derivation of the RVM system from
Abraham’s dynamics is Theorem 5.3 in [13]. Lazarovici uses several ideas from [7],
together with additional, more elaborate estimates on the electromagnetic field, by
which he can handle particles with a radius of order N−1/2. The method of proof
used in [13] involves particle paths, and is rather technical. Perhaps the Eulerian
approach proposed here could help simplifying the analysis in [13].
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In the history of life, immune system and cancer have been engaged in an evolutionary 
arms race driven by the twin forces of mutation and selection. Ideally therapies should be 
a resolutive weapon, but, despite great progresses during the last 50 years or so, the race 
still goes on. The aim of this paper is to present a mathematical model, which can be used 
as in silico laboratory, to provide some indication on the effectiveness of therapies. Here 
we focus on two cancer populations competing for resources and subjected to the action 
of two types of immune system cells: thus the model results in a system of 4 differential 
equation that is analytically and computationally studied to elucidate its properties and 
emerging behaviors. At the beginning, some specific subsystems are analyzed and the 
effects of different therapies simulated; in particular first the system comprising a single 
cancer and immune cells type is considered and next the case of two cancer clones in 
absence of the immune cells. The complete model is then presented, which yields a rich 
variety of behaviors; in particular it is shown that for strong intertumoral competition, 
and high recognition levels by the immune system, stable stationary states are replaced 
by sustained oscillations. Finally some conclusion about therapy effectiveness are drawn, 
based on the results of simulations.
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subjected to the action of two types of immune system cells: thus

the model results in a system of 4 differential equation that is an-

alytically and computationally studied to elucidate its properties

and emerging behaviors. At the beginning, some specific sub-

systems are analyzed and the effects of different therapies sim-

ulated; in particular first the system comprising a single cancer

and immune cells type is considered and next the case of two can-

cer clones in absence of the immune cells. The complete model is

then presented, which yields a rich variety of behaviors; in par-

ticular it is shown that for strong intertumoral competition, and

high recognition levels by the immune system, stable stationary

states are replaced by sustained oscillations. Finally some conclu-

sion about therapy effectiveness are drawn, based on the results

of simulations.

Keywords: Cancer Modeling and Therapies, Population Dynamics,

In Silico Laboratory, Tumor Immune Interaction.

1 Introduction

Cancer is an evolutionary disease, an idea originated from the seminal work by

Nowell [1] which has become nowadays commonplace and has exerted a pro-

found influence not just on our understanding of cancer emergence but also on the

development of antitumoral therapies [2, 3, 4, 5].

Indeed it has become clear that the blind processes, through which we and

2
other species have emerged, carry with them inevitable limitations, and trade-offs

which, for accidental or adaptive reasons, make us susceptible to cancer or other

diseases.

Tumorigenesis is intrinsically multiscale, in that emerging phenomena at the

macroscopic level express a self-organizing ability, resulting from the interactions

between entities at the microscopic level. For instance selection of successful sub-

clones emerges from the dynamics at the cellular and sub cellular level and shapes

macroscopic features of the cellular populations and their environment. Emerging

characteristics are then the outcome of bottom-up process, from lower to higher

level representations. On the other hand, top-down mechanisms may also oper-

ates (the so-called ”immergence”), thus closing a feedback loop: the emerging

patterns may affect and perturb the lower levels. For instance, the environment

(macroscopic level) acts on the cellular (microscopic) level.

At the molecular level cancer arises during the replication and recombination

of genes, processes that may result in the occurrence of occasional deleterious

mutations, including those that can initiate cancer: DNA damages continuously

arise and, even though they are are balanced by DNA-repair functions, the net

result is still a vulnerability to cancer [6].

Evolutionary pressures work also at the macroscopic level: interactions be-

tween organisms and cancer have existed from the early stages of multicellular

life and have shaped the evolution of complex organisms. The need to suppress

cancer has played an important part in how multicellular organisms have evolved:

powerful protecting mechanisms have been necessary to allow the development

3
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of animals with large bodies and long lives. On the other hand tumor types have

emerged which have developed resistance to the immune system and, nowadays,

therapy [7]. Thus, in the history of life, immune system and cancer have been

engaged in an evolutionary arms race driven by the twin forces of mutation and

selection.

Mutations do not just produce cancer cells but they are clearly at the hearth

of cancer heterogeneity, which has has been invoked to explain one of major as-

pects of cancer development, namely acquired drug resistance, by which phases

of remission are often followed by a rapid growth of tumor cells. Mutations en-

sure that, even though therapies exist that can decimate a cancer cell population,

one or more variants are present in the tumor population which are resistant, lead-

ing to the resurgence of treatment-refractory disease [8] . In turn, natural selection

promotes cell clones that have acquired advantageous heritable characteristics [8].

The emerging picture, then, is that of coexisting cancer populations, embedded

in an environment comprising normal and immunes system cells [9]. Interactions

with environmental factors clearly shape the growth, or otherwise, of the different

tumor types, so in this sense it is possible to talk of an ecology of cancer [10],[11].

Environment operates a selection of cancer cells in two ways: they compete

for resources and are selectively attacked by immune cells. The fitness of tumor

species, i.e. the ability to adapt and grow, depends on how effectively it outcom-

petes the others and how successfully develops mechanism to escape detection

and elimination by the immune system.

This suggest that a basic way to investigate the effects of evolutionary factors
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in tumor development is provided by the theory of populations which takes natu-

rally into account different environmental factors such as finiteness of resources,

competition between species and predation. A population theoretical approach

is used in the present paper: two competing types of cancer are considered to-

gether with a pair of immune system clones, each specific for one cancer species.

Thus the model takes into account cancer heterogeneity and the interaction among

clones.

The model presented here is, admittedly, a drastic simplification of the pro-

cesses underlying cancer evolution, and, in some sense, can be considered a mini-

mal model that takes into account some of the important factors involved in cancer

development, i.e. the activity of immune system, the competition between cancer

species and effects of medical treatments.

Given the relevance of the problem it is not surprising that multifaceted aspects

of cancer have been the focus of much theoretical and experimental work: more

relevantly for the work presented here is the fact that a variety of mathematical

tools has been used to model cancer dynamics and the effects of therapies, among

them differential equations [12, 13, 14, 15, 15, 16, 17, 18, 19], stochastic models

[20, 21, 22], theory of games [23, 24, 25]. For a review see for instance and

references therein [26, 27, 28].

In the literature there exist models considering the effects of specific aspect of

cancer in greater detail than is done here; for instance, as concerns the interaction

of cancer with the immune system, see and the review in [26].

However, at best of our knowledge the present work is the first to bring to-

5
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gether the aspects of immune action with the competition between different clones,

both of cancer and immune cells.

In the next section the model will be presented, and in the next two sections

specific subsystems will be presented: subsection 3.1 will consider just one cancer

type together with the corresponding immune system cells to study in detail the

effect of the ”predation” term, while in 3.2 the effect of the competition between

cancer clones will be considered.

In subsection 3.3 all elements of the models, i.e. competition and predation

are brought together and the resulting emergent properties of cancer populations

are discussed.

Finally section 4 provides some conclusions and research perspectives.

2 Material and Methods

This section provides the mathematical formalization of the model: two compet-

ing types of cancer are considered together with two types of immune system

cells, each detecting and attacking a specific cancer species.

In the following x1 = x1(t), x2 = x2(t) will denote, when ambiguity does not

arise, both the tumor types and their numerousness and the variables z1 = z1(t)

and z2 = z2(t) will represent the types and numerousness of the immune system

cells.

A natural way to model the evolution of interacting populations is via a system

of differential equations [29]; we have adopted this approach here, and, in con-

clusion, the system comprises four equations, two describing the evolution of the

6

of animals with large bodies and long lives. On the other hand tumor types have

emerged which have developed resistance to the immune system and, nowadays,

therapy [7]. Thus, in the history of life, immune system and cancer have been

engaged in an evolutionary arms race driven by the twin forces of mutation and

selection.

Mutations do not just produce cancer cells but they are clearly at the hearth

of cancer heterogeneity, which has has been invoked to explain one of major as-

pects of cancer development, namely acquired drug resistance, by which phases

of remission are often followed by a rapid growth of tumor cells. Mutations en-

sure that, even though therapies exist that can decimate a cancer cell population,

one or more variants are present in the tumor population which are resistant, lead-

ing to the resurgence of treatment-refractory disease [8] . In turn, natural selection

promotes cell clones that have acquired advantageous heritable characteristics [8].

The emerging picture, then, is that of coexisting cancer populations, embedded

in an environment comprising normal and immunes system cells [9]. Interactions

with environmental factors clearly shape the growth, or otherwise, of the different

tumor types, so in this sense it is possible to talk of an ecology of cancer [10],[11].

Environment operates a selection of cancer cells in two ways: they compete

for resources and are selectively attacked by immune cells. The fitness of tumor

species, i.e. the ability to adapt and grow, depends on how effectively it outcom-

petes the others and how successfully develops mechanism to escape detection

and elimination by the immune system.

This suggest that a basic way to investigate the effects of evolutionary factors
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cancer clones, whereas the others model the dynamics of corresponding clones of

the immune system.

As argued before equation of model must contain competition and predation

terms, and the equations are follows:

dx1

dt
= r1x1︸︷︷︸

proliferation

− b11
K1

x2
1 −

b12
K1

x1x2

︸ ︷︷ ︸
competition

− c1
K1

x1z1
︸ ︷︷ ︸
predation

,

dx2

dt
= r2x2 −

b22
K2

x2
2 −

b21
K2

x1x2 −
c2
K2

x2z2,

dz1
dt

= β1z1︸︷︷︸
proliferation

+
α1

H
x1z1

︸ ︷︷ ︸
recognition

− γz1

(
z1 + z2

H

)

︸ ︷︷ ︸
competition

dz2
dt

= β2z2 +
α2

H
x2z2 − γz2

(
z1 + z2

H

)
, (1)

where all parameters are supposed to be positive.

Consider tumor species x1, with net reproduction rate r1 = b1 − d1, b1 and d1

being the birth and death rate, respectively. In absence of other cancer species and

of the immune system, x1 growth is limited solely by intra-specific competition,

represented by term b11x
2
1/K1. Setting b11 = r1, the maximum value x1 can attain

is K1, which then plays the role of carrying capacity [29]. In the full system the

growth of x1 is further limited by inter-specific competition for resources (mea-

sured by the term b12x1x2/K1), and by the interaction with the immune system

(the term c1x1z1/K1 ).

We turn now our attention to the immune system. Growth of z1 is due to two

factors: it is produced by the organism with a net rate β1 and it is further enhanced

7

by the interaction with the tumor x1, weighted by the parameter α1, which can be

thought of as measure of how well immune cells detect and recognize cancer cell.

Finally intra and inter-specific competitions between cells of immune system limit

the growth of z1. As before, in isolation, H is the carrying capacity of z1. The

case for species x2 and z2 is similar.

This system of equations can be modified in a simple way to take into account

the response of cancer cells to medical treatments. For instance the effect of drugs

reducing rates of growth ri, i = 1, 2 , such as many types of chemotherapies,

[30] can be modelled by adding to equations describing cancer evolution a term

of the form −gi(t)xi, (see [12]) where gi(t) account for the drugs kinetics in

the organism. This is equivalent to define a new growth rate r′i = ri − gi(t) =

bi−di−gi(t): if r′i < 0 the number of tumor cells xi decreases, to grow again when

the concentration of the drug becomes lower than some threshold gth. Time course

of g can be modeled, for instance, with methods of the compartment theory, but to

keep the treatment simple here g will be assumed to be constant, corresponding to

a situation in which drugs are administered continuously so that g does not vary

much. The other end of the spectrum is represented by therapies where drugs are

dispensed in sequences of relatively short bursts [13]; this kind of treatment will

be also considered. Therapies reducing the rate of growth will be denoted, in the

following, as r-terapies.

A different way to treat cancer is ”starving” it by making more difficult for tu-

mor cells to access resources: this is the idea, for instance, behind anti-angiogenesis

therapies [31].
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Here the effects of this kind of treatment will be simulated by decreasing the

carrying capacities K1, K2 to lower values K ′
1, K ′

2: cures of this type will be

called s-therapies.

Alternatively immune therapies, in the sequel denoted as i−therapies, can be

adopted, which enhance the recogniton performance of immune system cells for

instance [32, 33]. In the framework of the present model this corresponds to

increase α1 to new values α′
1.

Before presenting results of the complete system, in subsections 3.1 and 3.2

specific subsystems will be studied in the framework of different ”experimental

conditions”: in other words the system will considered an in silico laboratory.

In all numerical explorations the time unit is one day (approximately the cell

cycle). Simulations have been implemented using Mathematica R©.

3 Results and Discussion

This section presents the results and discussion of theoretical and computational

analysis of the model.

First some specific cases are studied (see subsections 3.1 and 3.2) and next

properties of the general model are investigated (subsection 3.3).

3.1 One cancer type with immune system

In this section the focus is on the interaction between a single cancer species

and the corresponding immune system cells: condition will be derived for the

eradication or control of cancer by the action of the immune system.
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To this aim we consider a subsystem of (1) comprising just a cancer type and

the corresponding immune cells:

dx1

dt
= r1x1 −

b11
K1

x2
1 −

c1
K1

x1z1,

dz1
dt

= β1z1 +
α1

H
x1z1 − γz1

(z1
H

)
, (2)

and to simplify the analysis we set r1 = b11, γ1 = β1: this way K1 and H are

the carrying capacity of x1, z1, when considered isolated systems.

This system of equations somehow simplifies more complete models, present

in literature, see, for instance [26].

It is straightforward to show that in the phase space (x1, z1) there exist 4 sta-

tionary points of (2), which will be denoted by Pi, i = 1, . . . 4 whose components

are the stationary values x∗
1, z∗1 , of x1, z1 respectively

The stationary points are

P1 : x
∗
1 = 0, z∗1 = 0, P2 : x

∗
1 = K1, z

∗
1 = 0, P3 : x

∗
1 = 0, z∗1 = H,

P4 : x
∗
1 =

β1(K1r1 − c1H)

α1c1 + β1r1
, z∗1 =

r1(β1H + α1K1)

α1c1 + β1r1
; (3)

of course, to have a biological meaning, P4 components must be both positive and

that occurs if and only if

r1 >
c1H

K1

. (4)

Points P1 and P2 are unstable, as it can be easily shown by standards methods

of stability analysis: P1 is an unstable node and P2 a saddle. More interesting are
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the points P3 and P4 as they correspond, respectively, to tumor free and coexis-

tence states.

The Jacobian matrix of the system at P3 is

J(0, H) =

[
r1 − c1H/K1 0

α1 −2β1

]

thus the tumor free state is stable if and only if

−2β1

(
r1 −

c1H

K1

)
> 0, −2β1 +

(
r1 −

c1H

K1

)
< 0

and both conditions are satisfied if

r1 ≤
c1H

K1

. (5)

Condition (5) contrasts the growth rate r1 to an ”immunity coefficient” c1H/K1

which in turn depends on how efficiently the immune system fights the tumor and

on the ratio between the carrying capacity of z1 and x1 respectively. A similar

coefficient, called ”resistance coefficient” has been derived in [12].

Note that the condition making P3 unstable also shifts the coexistence point

P4 in the positive quadrant of the phase space and analysis of the Jacobian matrix,

calculated at P4, shows that if r1 > c1H/K1 then P4 is stable: in other words the

same condition ensuring the existence of P4 in the positive quadrant guarantees

its stability, thus ruling out the existence of limit cycles.

The existence, or otherwise, of P4 does not depend on the parameters α1, β1,

which, however, affect the values of x∗
1, z

∗
1 , as shown by Eq. (3 ). The model

then shows that even though parameters values do not satisfy condition (5) and
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complete eradication does not occur, containment to relatively low, harmless level

is still possible, if α1 or β1 are large enough.

In Fig 1 some examples of cancer and immune cells dynamics are presented.

Parameters of the curves in panel (A) satisfy condition (5) and thus the cancer is

eliminated; the initial increase is due to the delay in the response of the immune

system.

Curves in panels B e C show two different coexistence configurations, char-

acterized by different values of α1, representing the effect of different recognition

levels.

Finally, consider, in analogy to what has been done in [13] a case of r-therapy

and i−therapy: as explained before this amounts to introduce new parameters

r′1 = r1 − g(t) and α′
1 > α1.

Simulations have been carried out assuming an short duration / high dose pro-

tocol and results are presented are presented in panels A and B of Fig. 2, for r-

and immunotherapy, respectively. The figure show a good qualitative agreement

with computations reported in [13], using a more detailed model of interactions

between cancer and immune system.

In the case of a continuous therapy, where r′ is constant if r′1 < c1H/K1 the

immune system will be able to eradicate cancer.

On the other end immunotherapies, which enhance the recognition perfor-

mance of immune cells, do not per se eliminate cancer, but they can contain it

to low, acceptable levels.
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3.2 Two cancer types ”in vitro”

Consider now the case in which the immune system is absent, and the two tu-

mor clones compete for resources; this allows to investigate the interplay between

competition and effect of therapy, as in experiments carried out in vitro [3].

Now the model is as follows:

dx1

dt
= r1x1 −

b11
K1

x2
1 −

b12
K1

x1x2,

dx2

dt
= r2x2 −

b22
K2

x2
2 −

b21
K2

x1x2. (6)

For simplicity set r1 = b11 > 0 and r2 = b22 > 0, thus the system is the

usual model for competing populations [29]. Even though this is a rather simple

system, still it is of interest as it allows to investigate the effect of heterogeneity

and more specifically of competition when therapy is administered, and this can

lead to interesting results.

Equilibrium points are

P1 : x
∗
1 = x∗

2 = 0, P2 : x
∗
1 = K1, x

∗
2 = 0, P2 : x

∗
1 = 0, x∗

2 = K2,

P4 : x
∗
1 =

b12K2r2 −K1r1r2
b12b21 − r1r2

, x∗
2 =

b21K1r1 −K2r1r2
b12b21 − r1r2

, (7)

and P4 exists only if

b12b21 �= r1r2.

Define

a12 =
b12K2

r1K1

, a21 =
b21K1

r2K2

, (8)
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competitions parameters a12, a21 can be considered relative measure of fitness

of x1, x2, as they determine which species will eventually survive [29].

The coordinates of point P4 can be written as

x∗
1 = K1

1− a12
1− a12a21

, x∗
2 = K2

1− a21
1− a12a21

,

and for P4 to exist in the positive quadrant it must be either a12, a12 > 1 or

a12, a12 < 1.

Stability condition of stationary points can be determined by standard methods

of analysis. The point P1 is always unstable; considering the other stationary

points, there exist 4 possible configurations.

In two of these configurations P4 does not belong to the positive quadrant: if

a12 > 1, a12 < 1 the point P2 is globally stable, and, symmetrically, if a12 <

1, a12 > 1 P3 is globally stable. These configurations will be denoted in the

following as S1 and S2 respectively. From an evolutionary point of view S1 and

S2 are examples of survival of the fittest.

Suppose now or a12, a12 > 1: this condition makes both P2 and P3 locally

stable, P4 is a saddle point and the phase space is partitioned in two basins of

attraction (configuration Ic). In other words the fate of the system depends on the

initial conditions, a situation that in evolution studies is referred as survival of the

first.

In all cases considered so far the principle of competitive exclusion applies, in

that of the two tumor types just one survives.

On the contrary if a12, a12 < 1, the point of coexistence P4 is globally stable

14
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(configuration Co).

Figure 3 shows the stream-plots of these configurations.

3.2.1 r-therapy: decreasing rate of growth

Consider a r-therapy, e.g. administration of a drug aiming to decrease the rates of

growth of the tumors: let new rates of growth be r′i = ri − g(t), i = 1, 2. Ideally

the therapy would make r′1 and r′2 negative, so that both x1 and x2 will decrease

exponentially, but, unfortunately this very rarely happens in real life situations,

as demonstrated by the finding of many studies showing a small number of cells

resistant to any agent are always present, see for instance [8, 30].

Next assume 0 < r′i < ri, i = 1, 2, and let a′12, a′21 be the fitness values ob-

tained from Eq. (8) by replacing r1, r2 with r′1 and r′2 respectively. Since decreas-

ing r′1, r′2 amounts to increase a′12 and a′21, respectively, the effect of the therapy

is to move the system toward states of stronger competitive interaction between

cancer clones. Therefore, discounting the case of the drug being ineffective, the

possible transitions are

Co → Si, Co → Ic, Si → Ic, i = 1, 2,

which can also be combined to give

Co → Si → Ic, i = 1, 2,

and the only invariant configuration is Ic, as in this case, a12 and a21 are greater

than 1.
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A general result is the disappearance of heterogeneity, a beneficial effect since

coexistence of different cancer types clearly increase the probability, via muta-

tions, that new cancer lines appear, which can be resistant to existing therapies.

Furthermore, obviously, heterogeneity makes targeting cancer more difficult.

The question remains whether cancer cell numbers are reduced, that is if the

asymptotic total cancer load x∗ = x∗
1 + x∗

2, which would result in absence of

the therapy, is larger than the carrying capacity of the clone surviving the tran-

sition from coexistence to competitive exclusion, in whatever final configura-

tion. A straightforward calculation shows that inequalities a21 < K1/K2 and

a12 < K2/K1 provide a sufficient condition for the relation

x∗ = x∗
1 + x∗

2 > max (K1, K2) (9)

to hold. More specifically if K1 > K2 (resp. K2 > K1 ) then just a12 < K2/K1

(resp. a21 < K1/K2 ) suffices.

Suppose K1 > K2 and let Co be the initial configuration: if condition (9) is

satisfied, the best therapy is to induce a Co → S2, that is to target selectively the

species x1.

Let x1 be the fitter clone and S1 as initial configuration: a decrease of r2

just enhances the effect of selection, leading to the disappearance of x2. On the

contrary if x1 is affected by the therapy, a transition to Ic may occur: suppose

now K2 > K1 then x2 can out-compete x1 leading to the counterintuitive result

that the asymptotic number of cancer cells is larger than in absence of treatment.

Turning now to the actual dynamics of x1, x2 it should be noted that the model
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predicts the emergence of the well known rebound effect: the total cancer load x

initially decreases to grow again at a later time. This effect can be explained as the

result of a transition from coexistence configuration to any competitive exclusion

configuration, where the the lack of competition allow a cancer type to expand

limited solely by its the carrying capacity. Then, after and initial transient, the total

load x will tend to equal xi, where i denotes the surviving cancer family. This type

of behavior is confirmed by numerical calculations and it is clearly visible in panel

(A) of Fig. 4, and more markedly in panel (B), where the insert provides a more

detailed representation. These results are agreement with the finding reported

obtained in [20, 3], using a probabilistic model to fit experimental data.

Summing up, in case of weak interaction between the two cancer types, e.g. if

clones access different resources, r-theraphies must be strong enough to eliminate

heterogeneity, since that implies, usually, also a decrease of the total cancer load:

ideally the treatment should target the clone with the largest carrying capacity.

Note that this is a somewhat surprising result, as it shows that the fitter clone is

not necessarily the most harmful.

Once a situation is reached where the competition is strong, r-therapies do

not produce positive effects, and occasionally may be disadvantageous, with the

temporary resurgence of heterogeneity in the Ic configuration, and uncertainty on

which cancer type will survive.
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1 + x∗

2, which would result in absence of

the therapy, is larger than the carrying capacity of the clone surviving the tran-

sition from coexistence to competitive exclusion, in whatever final configura-

tion. A straightforward calculation shows that inequalities a21 < K1/K2 and

a12 < K2/K1 provide a sufficient condition for the relation

x∗ = x∗
1 + x∗

2 > max (K1, K2) (9)

to hold. More specifically if K1 > K2 (resp. K2 > K1 ) then just a12 < K2/K1

(resp. a21 < K1/K2 ) suffices.

Suppose K1 > K2 and let Co be the initial configuration: if condition (9) is

satisfied, the best therapy is to induce a Co → S2, that is to target selectively the

species x1.

Let x1 be the fitter clone and S1 as initial configuration: a decrease of r2

just enhances the effect of selection, leading to the disappearance of x2. On the

contrary if x1 is affected by the therapy, a transition to Ic may occur: suppose

now K2 > K1 then x2 can out-compete x1 leading to the counterintuitive result

that the asymptotic number of cancer cells is larger than in absence of treatment.

Turning now to the actual dynamics of x1, x2 it should be noted that the model
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predicts the emergence of the well known rebound effect: the total cancer load x
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1/K
′
2; Eq. (8 ) now

becomes

a′12 =
b12
r1κ′ , a′21 =

b21κ
′

r2
. (10)
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reached by increasing a12 while decreasing a21. Finally, transitions from Ic to S1

or S2 may take place the final state depending on the particular clone is targeted.

Consider first S1 → Co, occurring when the therapy is aimed to the fitter can-

cer clone. In evaluating this result it should be remembered that before treatment,

x1 dominates x2 and, therefore the asymptotic total cancer load x∗ is x∗ = K1,

whereas, after treatment, the condition on the asymptotic total cancer load is, after

treatment,

x∗ = x∗
1 + x∗

2 > max (K ′
1, K

′
2) , (11)

which, in principle, can be less than K1: thus heterogeneity does not necessarily

results in an increase of the total cancer load x.

If a transition may lead to S1 or S2, clearly the best results are obtained target-

ing the clone with the largest carrying capacity, otherwise an increase of x may

occur.

Some example of different effects of medical treatment are illustrated in Fig.

5.

Panel (A) represents the case of a relatively under-performing therapy, which,

in an initial configuration Co, do not eliminate any of the tumor types but which

induces a switch in their the relative fitness, and the initially fitter type is decreased

and so the total load; treatment, by decreasing x1, can also result in the survival

of the less fit type, which, otherwise, would eventually disappear (compare panel

(B)). Enhanced effectiveness of treatment leads to the disappearance of x1, starting

from two heterogeneous configuration namely Co and Ic, respectively as depicted

in panels (C) and (D); as a consequence, if K2 > K1, large rebound can occur,
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here more evident in panel (D). Note also that, in the last two cases the asymptotic

total load is x∗ = K2.

From these examples it is apparent that a the safest therapy is to target clones

with the large carrying capacity, since at the worst the therapy is useless, but not

harmful.

As a final caveat it is worth remembering that therapies tried in experiments in

vitro yield outcomes that do not necessarily remain valid in vivo , in presence of

the immune system, however, situations occurring in vitro can provide an useful

approximation in the limit of weak immune system or weak competition.

3.3 Bringing all pieces together

In the previous subsections we have taken separately factors such as immune sys-

tem and competition, to study how they influence cancer growth, and furthermore,

how they affect results of different therapies. In other words, we have simulated

in vitro experiments in which the complex situation are simplified to allow spe-

cific factors to be analyzed. Obviously a complete picture of cancer evolution,

in the framework of the present model, needs all these factors to be considered

together. The result is a rich variety of new dynamical behaviors: some of them

are presented in the sequel.

Plots of Fig. 6 highlight the effect of an increased action of immune cells on a

system of competing cancer types. These examples clearly show that, differently

from what happens in vitro, competition parameters aij are now not enough to

uniquely determine the fate of the cancer population, and that recognition and
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predation by the immune system play an important role.

Note that situation of competitive exclusion can mutate into coexistence, via

damped oscillations, or oscillatory behavior, as the effect of the immune system

increase; oscillations have been clinically observed during cancer development,

an effect known as the Jeff phenomenon [12].

It should be noted that results from subsections 3.1 and 3.2 clearly indicate that

”predation” of the immune system or competition between cancer types alone are

not enough to generate limit cycles; both these factors need to be present. In this

case an Hopf bifurcation can occur and Fig. 7 presents an example of transition

from a stable focus to a limit cycle, obtained by changing the carrying capacity

K2.

In general numerical explorations have shown that, in the parameter space

a12, a21, oscillatory behavior takes place below a curve along which a21 decreases

as a12 increases. Therefore it seems that oscillations can occur if competition be-

tween cancer types is not too strong. The location of the parameter region contain-

ing limit cycles is also determined by the recognition levels αi, in the sense that

increasing αi makes the occurrence of oscillation more likely to happen, since, in

this case, the immune system adapts more slowly to the cancer levels.

The immune system, obviously, affect also the results of therapies. As shown

in the sequel, both r- and s-therapies can, in some instances, be counterproduc-

tive. Consider first r-therapies: In some case they suppress oscillations, see Fig.

8, panel (A), where from the initial oscillating state, the system relaxes to com-

petitive exclusion configuration S2. Initially x1, x2 have similar aij parameters.
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The therapy has made x1 less competitive, and therefore it is eliminated by natural

selection. Note that the total cancer load decreases because here the type with the

largest carrying capacity has been targeted.

The case of panel (B) shows clearly the effect of the recognition parameters

αi: initially clone x1 out-competes x2 though α1 > α2; a small increase of a12

it is enough to curtail x1, and to push upward x2. In other word the therapy, by

making the competition more even, allows for a greater impact of the recognition

by the immune system. In conclusion, it is more difficult for x1 to survive and,

consequently, the clone x2 increases, because of the reduced competition. Note

that now the total cancer load increases, due to the heterogeneity of the system.

S-therapies appear to work well with the immune system in eliminating, or at

least controlling cancer, as it happens in panel (C) of Fig. 8 where initially clones

coexist ( configuration Co) with K1 > K2: if x1 is targeted so that K ′
1 = K ′

2 clone

x2 will become dominant, but, since it is more easily recognized by the immune

system, will be, in turn, eradicated. This is an almost prototypical example of

how, selection, predation ans therapy can contribute to cancer eradication: the

therapy, by weakening the clone less likely to be recognized, makes it possible

its elimination by the second one, which in turn is eliminated by the immune

system. Finally in panel (D) it is shown that, targeting the strongest clone, and

hence evening selective pressure, can generate sustained oscillations, and hence

heterogeneity.

It is then possible to draw some conclusions for the above cases, namely that

to be effective a therapy must make more asymmetric the contest between the
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two cancer species, to avoid heterogeneity and, consequently, to make easier the

eradication, or control, by the immune system, of the surviving cancer. Ideally

one should try to target the type with the largest carrying capacity, or the type less

likely to be recognized by the immune system.

4 Conclusions

The starting point of this paper is that cancer development is ruled by the same

selective forces shaping the evolution of species. In a population-theoretical per-

spective here a model of competing cancer species subjected to the action of im-

mune system cells has been proposed. At best of our knowledge the present work

is the first to bring together the competition between different cancer clones and

the action of the immune system.

Analysis and numerical simulations confirm that this model is able to repro-

duce some of the experimental finding about cancer development, and, also, the

effects of therapy and, therefore, it can provide an in silico laboratory by which

different experimental conditions can be tested. Here we have mostly considered

two classes of therapies: r-therapies aim to reduce the rate of growth of cancer

cells, as do conventional chemo or radiotherapies and s-therapies by which the

cancer is starved, like in antiangiogenetic treatments.

In absence of the immune system, the in vitro case of subsection 3.2, analysis

suggests that, when the competition is weak, medical treatments, in the form of

r- or s−therapies, can eliminate or, at least control cancer. However it has been

also shown that if the cancer type with smaller carrying capacity is targeted total
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cancer load may actually increase after therapies are applied. In case of strong

competition medical treatment may not produce positive effects, and occasionally

be disadvantageous, with the temporary resurgence of heterogeneity and uncer-

tainty on which cancer type will survive.

The description of cancer development is, obviously, more complex when,

besides competition, also to recognition and predation by the immune cells are

considered. However, the results presented in 3.3 allow to formulate, albeit ten-

tatively, this conclusion: in general it is beneficial to ”break the symmetry” in the

contest between cancer clones, targeting the type with the larger carrying capac-

ity. Alternatively one should select for treatment the type less recognizable by the

immune system.

Therapies must be adapted, not just to the different cancer types, but also to

their interactions, and this requires also the knowledge of the environmental con-

straints under which tumor develops. In this respect important variables are com-

petitions parameters aij , the carrying capacities Ki and recognition parameters

αi.

In perspective, preliminary results suggest that immunotherapies have more

predictable effect, compared to r- and s-therapies, and it is clear that a more thor-

ough investigation of their properties is necessary to asses their impact on the arm

race between cancer and immune system.
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Figure 1: Dynamics of cancer and immune cells. Panels A, B, C: The continu-
ous and dashed curves represent, respectively, the number of cancer and immune
cells. Parameters values are c1 = 5, h = 107, K1 = 109, γ1 = β1 = 0.05,
r1 = b11, in all panels; in (A) r1 = 0.03, α1 = 0.01, in (B) r1 = 0.3, α1 = 0.01
and in (C) r1 = 0.3, α1 = 0.06.
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Figure 2: Comparison of effect of r− and i− therapy . Parameters are K1 =
109, γ1 = β1 = 0.05, r1 = b11 = 0.14, c1 = 5, for both panels. In (A) h = 105,
α1 = 0.025, r′1 = 0.01. In (B) h = 107, α1 = 0.01, α′

1 = 0.05.
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Figure 3: Vector fields of different configurations. Panels A, B, C, show, re-
spectively, representations of vector field for coexistence of the two clones, com-
petitive exclusion (here dominance of clone x1), and competitive exclusion with
dependence from initial conditions.
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Figure 4: Effects of r−therapy in vitro.
In all panels dashes (red in color) and points (blue ) represent the trajectories of
the first and second clonal family, respectively, and the continuous line (yellow)
depicts the total number of cancer cells. The green area indicates the time frame of
the continuous therapy. Values of parameters are K1 = 9 ·108, K2 = 5 ·108, b11 =
r1, b22 = r2 in all panels and x1 is the fitter clone. The starting condition is Co
Panel (A): non selective therapy. Parameters values are a12 = 0.56, a′12 = 1.67,
a21 = 0.9 and a′21 = 7.2. Panel (B):targeting clone x2. Parameters:a12 = 0.52,
a′12 = 3.22 and a21 = 0.9 Panel (C):targeting clone x1. Parameters: a12 = 0.74,
a21 = 0.3, a′21 = 1.8 The rebound is presented in greater detail in the insert of
panel (B).
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Figure 5: Effects of s− therapy in vitro. Code for curves representation is as in
Fig. 4. The cancer type x1 is supposed to be less resistant to the therapy, compared
to x2, furthermore K2 > K1. Values of parameters and transitions are as follows.
Panel (A): a12 = 0.17, a′12 = 0.3, a21 = 0.75, a′21 = 0.42, Co → Co Panel (B)
a12 = 0.08, a′12 = 0.15, a21 = 1.1, a′21 = 0.61, S1 → Co. Panel (C) a12 = 0.3,
a′12 = 1.5, a21 = 0.74, a′21 = 0.15, Co → S2, Panel (D) a12 = 1.54, a′12 = 7.71,
a21 = 1.11, a′21 = 0.22, Ic → S2, Note, in this panel, the large rebound
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Figure 6: Effects of the immune system. Code for curves representation is as
in Fig. 4. In the first row c1 = c2 = 0, i.e. the immune system is absent as in
subsection 3.2, and in the second and third rows c1 = c2 = 20, c1 = c2 = 40,
respectively. Values of parameters for all panels are: h = 107, β1 = β2 = γ1 =
γ2 = 0.05, K1 = 9 · 108, K2 = 5 · 108. Panel (A): a12 = 0.42, a21 = 0.3,
α1 = 0.001, α2 = 0.01 (Co configuration). Panel (B): a12 = 0.33, a21 = 5.4,
α1 = 0.006, α2 = 0.003 ( S1). Panel (C): a12 = 1.11, a21 = 3.6, α1 = 0.002,
α2 = 0.008 (Ic).
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Figure 6: Effects of the immune system. Code for curves representation is as
in Fig. 4. In the first row c1 = c2 = 0, i.e. the immune system is absent as in
subsection 3.2, and in the second and third rows c1 = c2 = 20, c1 = c2 = 40,
respectively. Values of parameters for all panels are: h = 107, β1 = β2 = γ1 =
γ2 = 0.05, K1 = 9 · 108, K2 = 5 · 108. Panel (A): a12 = 0.42, a21 = 0.3,
α1 = 0.001, α2 = 0.01 (Co configuration). Panel (B): a12 = 0.33, a21 = 5.4,
α1 = 0.006, α2 = 0.003 ( S1). Panel (C): a12 = 1.11, a21 = 3.6, α1 = 0.002,
α2 = 0.008 (Ic).
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Figure 7: Hopf bifurcation. Trajectories of x1, x2 for bifurcation parameter K2

below and above the bifurcation point. In panels (A) and (B) code for curves rep-
resentation is as in Fig. 4, panel (C) and (D) trajectories of x1, x2 are represented
in the phase space. Values of parameters are h = 107, β1 = β2 = γ1 = γ2 = 0.05,
c1 = c2 = 10, , α1 = 0.002, α2 = 0.008, K1 = 5 · 108 for all panels, and carrying
capacity K2 varies from K2 = 9 · 108, K ′

2 = 5 · 108, K1 = 5 · 108,
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Figure 8: Effects of the r- and s-therapy. Curve codes are as in Fig. 4 and the
green area indicates the time frame of the continuous therapy. Values of parame-
ters are, for all panels: h = 107, β1 = β2 = γ1 = γ2 = 0.05, c1 = c2 = 10. Panel
(A): a12 = 1.11, a′12 = 4.44 ,a21 = 1.54, α1 = α2 = 0.004. Panel (B): a12 = 0.24
a′12 = 0.42, a21 = 3.6, α1 = 0.006, α2 = 0.003. Panel (C): a12 = 0.2 a′12 = 1,
a21 = 0.83, a′21 = 0.17, α1 = 0.001, α2 = 0.01. Panel (D): a12 = 0.83, a′12 = 1.5,
a21 = 2.25, a′21 = 1.25, α1 = 0.002, α2 = 0.008.
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Abstract

We consider two models of biological interactions and transfer processes be-
tween cells interacting and exchanging some transferable materials. Starting
from detailed description of microscopic interactions we derive discrete and
continuous integrodifferential models. The first problem is related to the
transfer of proteins motivated by advantages of cell transfer therapies for
the treatment of cancers. The second case concerns the activity transfer
between immune and tumour cells. We give here a qualitative analysis in-
cluding asymptotic behaviour of the solutions, we provide some numerical
tests and we prove the convergence of the solutions from the discrete model
to the continuous model.

Keywords: Cell-to-cell interaction, transfers rules, discrete models, kinetic
theory of active particles, asymptotic stability, numerical analysis.

1. Introduction

The subject of this paper is the modelling of transfer processes occurring
between population of cells in a living system constituted by a large number
of entities which interact with different strategies and exchange some quan-
tities of transferable materials. To construct the models we will start by5

considering a detailed description of microscopic interactions which include
not only modifications of the microscopic state, but also proliferation and
destruction of cells. We will present in this paper two different case of study.
The first problem is related to the transfer of proteins or a transferable mat-
ter between interacting cells. The work is motivated by advantages of cell10

transfer therapies for the treatment of cancers [7, 8]. While the second prob-
lem concerns transfer of activity between immune and tumour cells. The
motivation is that the stage of the early growth of a tumor belongs to the
so-called free cell regime, in which the tumour cells are not yet condensed in
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cluding asymptotic behaviour of the solutions, we provide some numerical
tests and we prove the convergence of the solutions from the discrete model
to the continuous model.
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1. Introduction

The subject of this paper is the modelling of transfer processes occurring
between population of cells in a living system constituted by a large number
of entities which interact with different strategies and exchange some quan-
tities of transferable materials. To construct the models we will start by5

considering a detailed description of microscopic interactions which include
not only modifications of the microscopic state, but also proliferation and
destruction of cells. We will present in this paper two different case of study.
The first problem is related to the transfer of proteins or a transferable mat-
ter between interacting cells. The work is motivated by advantages of cell10

transfer therapies for the treatment of cancers [7, 8]. While the second prob-
lem concerns transfer of activity between immune and tumour cells. The
motivation is that the stage of the early growth of a tumor belongs to the
so-called free cell regime, in which the tumour cells are not yet condensed in
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a macroscopically observable spatial structure, and the interaction between15

tumour and immune system occur at the cellular level. This make the ki-
netic approach particularly appropriate. The goal is to provide some new
models for transfers which can be used in practice to fit real experimental
data.

For both models, the mathematical framework is defined by a system of20

integrodifferential equations which describe the evolution in time of the dis-
tribution function over the microscopic state of cells, this makes the kinetic
approach particularly appropriate. The methods can be regarded as par-
ticular cases of Methods of mathematical kinetic theory for active particles
which have been recently introduced in the . general mathematical frame-25

work of the ,” Theory of Active Particles ”, introduced by N Bellomo,and
can be regarded as new mathematical approach which develops method of
kinetic theory to deal with active particles (cells) rather than classical par-
ticles. The microscopic state includes biological functions. The modelling of
microscopic interactions also refers to the ability and the behaviour of cells30

to interact and communicate with other cells, including proliferation and
destruction.[2, 3, 4]. An interesting prospect is that biological transfer pro-
cesses will be supported by rigorous investigation methods and tools, similar
to what happened in the case of mechanical and physical sciences. It is not
an easy task, considering that new mathematical methods may be needed35

to deal with the inner complexity of biological systems which exhibit fea-
tures and behaviours very different from those of inert matter. Indeed, cells
organize their dynamics according to the above functions, while classical
particles follow deterministic laws of Newtonian mechanics.

For more informations on biological transfers processes, recent studies40

have shown that cells can communicate by the transfer of membrane proteins
[6]. Inter cellular transfer of proteins is a mode of communication between
cells that is crucial for certain physio- logical processes. For instance, the
direct transfer of protein P-glycoprotein (P-gp) between cells was studied in
[1, 10]. Because P-gp may act as a drug-efflux pump, its transfer may confer45

resistance against cytotoxic drugs to cancer cells. Another example is the
transfer of human immunodeficiency virus (HIV) from an infected cell to an
uninfected cell [5]. It has been shown in recent studies that the α-synuclein
can transfer from one cell to another and could be a key element in the
spread of Parkinson disease pathology [9].50

The paper is organized as follows, the section 2 is devoted to the first
problem which involves transfers with mass conservation. We describe the
transfer rules,we derive a fully discrete model and we give its associated
continuous model. In section 3, we consider two population of cells, immune

2

cells and tumour cells,exchanging their level of activities, we give a gener-55

alized framework and study the qualitative analysis and the main aim here
is to prove the asymptotic behaviour of the solutions. The next section we
present some numerical results. At the end of the paper in an appendix we
show the convergence of the discrete model to the continuous model.

2. Transfers with mass conservation: An individual based model60

2.1. Transfer rules

Consider a population of cells in a co-culture, where each cell possesses
a amount of protein to be partially transferred due to some specific rules.
Assuming that cells continually encounter other cells. Each pairwise of en-
counter during the transfer time results a winner ”Recipient cell” and a65

loser ”Donor cell” or a loser ”Recipient cell” and a winner ”Donor cell”.
Then in order to fully determine the transfer rules we will use two types of
(deterministic type) transfers. The first type of transfer will ocurs with an
efficiency rate f1 and the second with efficiency f2 depending on which type
of cells win or lose. The basic assumptions used to describe the transfers70

are the following.

Assumption 2.1. (A1) The probability that a pair of two individuals are
involved in a transfer event is independent of their x values and the
pairing is chosen randomly from all individuals.

(A2) Let f1, f2 ∈ L∞ (R) be two even functions with 0 ≤ f1 ≤ 1/2 and 0 ≤75

f2 ≤ 1/2 (two transfer efficiency). If two individuals whose difference
in quantity is x are involved in a transfer, then the one with higher
value loses f1(x) (respectively f2(x)) times the difference of their x
values and the one with lower x value gains exactly this amount with
the probability π1(x) (respectively with the probability π2(x)).80

More precisely we will make that following assumption

Assumption 2.2. We assume that 0 ≤ (f1 + f2)(x) < 1 for almost every
p ∈ R.

Then we will defined the probabilities π1(x) and π2(x) defined by

π1(x) :=
[12 − f2(x)]

[1− (f1 + f2)(x)]
and π2(x) :=

[12 − f1(x)]

[1− (f1 + f2)(x)]
. (2.1)

One may observe that
π1(x) + π2(x) ≡ 1.

3
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Figure 1: Transfert rules

The transfer rules read as follow:
Let yold , zold are the pre-transfer content sizes before transfer of the85

the interacting cells,and whose difference in quantity is l = zold − yold, and
let ynew, znew are the post-transfer content sizes, that are related to yold and
zold by the relations

1. First transfer with transfer efficiency f1 ”Recipient cells win”

ynew = yold + f1(l)l znew = zold − f1(l)l

In this situation, the size of the content increases from yold to a value
x then ynew = x and yold = x− f1(l)l90

2. Second transfer with transfer efficiency f2 ” Donor cells win”

ynew = yold + f2(l)l znew = zold − f2(l)l

4
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4

In this situation, the size of the content is decremented from zold to a
value x then znew = x and zold = x+ f2(l)l.
The probability π1(l) that the ”Recipient cells win” and the proba-
bility π2(l) that the ”Donor cells win”. Because of the two events
”Recipient wins, Donor loses” and ”Recipient loses, Donor wins ” are
complementary we have

π1(l) + π2(l) = 1

2.2. The discrete Model

Given the maximal value of the transferable quantity xmax and its min-
imal value xmin, we consider a partition

0 = x1 < x2 < ... < xi = x1 + i∆x < ... < xIL = L

with xi+1 − xi = ∆x, ∀i = 1, IL − 1.
Starting from an initial distribution u0(x) for all sizes x in ΩL := [xmin, xmax],

we introduce an initial sequence u0i , i = 1, ...IL, by

u0i =
1

∆x

∫ xi+1

xi

u0(x)dx � u0(
xi+1 + xi

2
).

We suppose that all the values uni for i = 1, ..., IL are known, and we propose95

to build the (un+1
i for i = 1, ...IL by the following scheme:

un+1
i = uni +∆t

∑
j

π1(lj) uni−f1(l)lj
∆x

︸ ︷︷ ︸
Recipient cells

uni+(1−f1(l))lj
∆x

︸ ︷︷ ︸
Doner cells

+∆t
∑
j

π2(lj)u
n
i−(1−f2(lj))lj

∆x
︸ ︷︷ ︸
Recipient cells

uni+f2(lj)lj
∆x

︸ ︷︷ ︸
Doner cells

−∆t uni

IL∑
j=1

unj ∆x

︸ ︷︷ ︸
To other sizes

(2.2)

where lj = j∆x is the difference of the transferable quantities between
two partner cells, the quantities i − f1(lj)lj , i + (1 − f1(lj)lj , i − f2(lj)lj
and i+ (1− f2(lj)lj are understood respectively as their integer part in the
system (2.2), and

ui :=

{
ui if i = 1, ..., IL,
0 otherwise.

5
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Let us rewrite the above scheme under the compact form

un+1
i = uni +∆tQn

i (2.3)

with
Qn

i :=
∑
j

∑
k

Kijku
n
j u

n
k − uni

∑
j=1

unj (2.4)

where Kijk will be defined precisely in section 5.
Similarly to the continuous case, for any sequence (φi)i=1,...,IL we have

the following inequality100

IL∑
i=1

φiQ
n
i =

IL∑
j=1

IL∑
k=1

(
IL∑
i=1

Ki,j,kφi −
φj + φk

2

)
unj u

n
k (2.5)

Therefore
IL∑
i=1

φiQ
n
i = 0

if
IL∑
i=1

φiKi,j,k =
φj + φk

2
.

Theorem 2.3. The total number of cell
∑IL

i=1 u
n
i is constant in time for the

solution of the discrete model (2.3) if and only if

IL∑
i=1

Ki,j,k = 1, ∀j, k = 1, ..., IL. (2.6)

The total mass of transferable quantities is preserved in time for the solution
of the discrete model (2.3) if and only if

IL∑
i=1

xiKi,j,k =
xj + xk

2
. (2.7)

2.2.1. Transfer kernel

According to Assumption 2.2, If a cell Cj and a cell Ck have, respectively,
a quantity xj and xk of P-gp activity before transfer with xj ≥ xk, then, after
transfer, Cj (respectively, Ck) will have an activity xj − (xj −xk)f1(xj −xk)105

with the probability π1(xj−xk) (respectively, xk+(xj−xk)f2(xj−xk) with

6
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6

the probability π2(xj −xk)). So the fraction transferred is f1(xj −xk), with
a probability π1(xj −xk) (resp. π2(xj −xk)) for Cj (respectively, Ck) which
depends on the difference between xj and xk (the distance between the P-gp
activities of Cj and Ck).110

Together with these considerations, one can define the transfer kernel K
satisfying the properties of Theorem 2.3 as follows:

Ki,j,k :=




π1(xj − xk) if xi = xj − (xj − xk)f1(xj − xk),

π2(xj − xk) if xi = xk + (xj − xk)f2(xj − xk),

0 otherwise.

(2.8)

3. From discrete to continuous model

In this section we show the convergence of the scheme (2.2). It means
that the difference |u − u∆|1 between the approximate solution u∆ of the
discrete model (2.2) and the solution u of the continuous model (3.1) tends
to zero as the meshsizes ∆t,∆x goes to zero (for simplicity we set ∆t =
r∆x). Here the approximate solution u∆ is defined as the piecewise constant
function defined on ]0, T [×ΩL

u∆(t, x) = uni For all (t, x) ∈, ]tn, tn+1[×]xi, xi+1[

where the values uni are computed by (2.2) and u is the solution of the
following continuous Cauchy problem




∂u(t, x)

∂t
= Q(u(t, .))(x), for x ∈ R,

u(0, .) = u0 ∈ L1
+ (R) .

(3.1)

The operator describing the rule for one transfer is defined by

Q(u)(x) :=

∫

R
π1(x)u(x+ f1(x)p)u(x− (1− f1(x))p)dx

+

∫

R
π2(x)u(x+ f2(x)p)u(x− (1− f2(x))p)dx

− u(t, x)

∫

R
u(t, x)dx

We will prove that the following theorem holds:115

7
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Theorem 3.1. Let u0 ∈ (L1 ∩ L∞)(ΩL) with total variation bounded lo-
cally in ΩL, u0 ≥ 0 , then as the mesh size ∆x tends to zero, there is a
subsequence of (u∆)∆x>0, the family of approximate solution of the discrete
model, converging in L1

loc([0, T ]×ΩL) to a function u ∈ L1
loc([0, T ]×ΩL) and

the limiting function u is solution of the solution of the continuous problem.120

Proof. See Appendix.
The preservation of the total number of cells, and the preservation of the

total mass of transferable quantity follows from the following equalities.

Lemma 3.2. Let Assumptions 2.1 and 2.2 be satisfied. We have the fol-
lowing properties125

(i) (Preservation of the total number of cells) For each u ∈ L1
+(R)

we have Q(u) ∈ L1
+(R) and

∫

R
Q(u)(x)dx =

∫

R
u(x)dx

(ii) (Preservation of the total mass of transferable quantities) For
each u ∈ L1

+(R) such that
∫
R xu(x)dx < +∞ we have

∫

R
xQ(u)(x)dx =

∫

R
xu(x)dx

Proof. We have

∫
R φ(x)[Q(u)(x)dx =

∫

R

∫

R
[π1(l)φ(y + f1(l)l) + π2(l)φ(y + l − f2(l)l)

−φ(y) + φ(y + l)

2
]u(y)u(y + l)dldy.

Therefore V = 0 whenever

π1(l)φ(y + f1(l)l) + π2(l)φ(y + l − f2(l)l) ≡
φ(y) + φ(y + l)

2
. (3.2)

To conclude it is sufficient to verify the above equality respectively when
φ(x) ≡ 1 and φ(x) = x and we obtain (i) and (ii). We have the following130

result.

Theorem 3.3. Let be τ > 0. Let Assumptions 2.1 and 2.2 be satisfied.
For each initial distribution u0 ∈ L1

+(R) (3.1) has a unique global positive
solution u(t, .). Moreover the first and second moment of the distribution

8

u0 are preserved in time. Namely we have the following properties for each
t ≥ 0

∫

R
u(t, x)dx =

∫

R
u0(x)dx and

∫

R
xu(t, x)dx =

∫

R
xu0(x)dx.

4. Activity transfert in tumour-immune system

4.1. A general model

Assumption 4.1. The physical system is constituted by n interacting cells
populations. Each population individual may be found in a state described135

by a variable x ∈ [0, 1].

Assumption 4.2. The probability density functions is defined, for each
population, by

uk = uk(t, x) : [0,∞)× [0, 1] −→ R+.

Therefore, the probability of finding, at the time t an individual of the i-
population in the state interval [0, 1] is given by

Pi(t) =

∫ 1

0
uk(t, x)dx.

Assumption 4.3. Interactions can be subdivided into conservative encoun-
ters which modify the state of the cells but not their number. The evolution
due to conservative encounters modifies the progression of tumor cells and
the activation of immune cells; Cell interactions in the case of mass con-
servative encounters will be defined by means of the two quantities : the
encounter rate ηkl and the transition probability density ψkl, where ηkl(y, z)
denotes the number of encounters per unit volume and unit time between cell
pairs of the (i, j)th populations with states y and z, respectively, we have

ηkl(x, y) = ηkl(y, x)

and ψkl(y, z, x) denotes the probability of transition of the ith cell to the state
x, given its initial state y and the state z of the encountering cells belonging
to the jth population.

Assumption 4.4. Proliferating cells will be described by the vital birth rate
βk(., x) where βk denotes the number of cells produced per unit volume and
unit time of the (i)th species with state x.
Destructive cells will be described by the vital death rate µk(., x) which is the

9
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xQ(u)(x)dx =

∫

R
xu(x)dx

Proof. We have

∫
R φ(x)[Q(u)(x)dx =

∫

R

∫

R
[π1(l)φ(y + f1(l)l) + π2(l)φ(y + l − f2(l)l)

−φ(y) + φ(y + l)

2
]u(y)u(y + l)dldy.

Therefore V = 0 whenever

π1(l)φ(y + f1(l)l) + π2(l)φ(y + l − f2(l)l) ≡
φ(y) + φ(y + l)

2
. (3.2)

To conclude it is sufficient to verify the above equality respectively when
φ(x) ≡ 1 and φ(x) = x and we obtain (i) and (ii). We have the following130

result.

Theorem 3.3. Let be τ > 0. Let Assumptions 2.1 and 2.2 be satisfied.
For each initial distribution u0 ∈ L1

+(R) (3.1) has a unique global positive
solution u(t, .). Moreover the first and second moment of the distribution

8

u0 are preserved in time. Namely we have the following properties for each
t ≥ 0

∫

R
u(t, x)dx =

∫

R
u0(x)dx and

∫

R
xu(t, x)dx =

∫

R
xu0(x)dx.

4. Activity transfert in tumour-immune system

4.1. A general model

Assumption 4.1. The physical system is constituted by n interacting cells
populations. Each population individual may be found in a state described135

by a variable x ∈ [0, 1].

Assumption 4.2. The probability density functions is defined, for each
population, by

uk = uk(t, x) : [0,∞)× [0, 1] −→ R+.

Therefore, the probability of finding, at the time t an individual of the i-
population in the state interval [0, 1] is given by

Pi(t) =

∫ 1

0
uk(t, x)dx.

Assumption 4.3. Interactions can be subdivided into conservative encoun-
ters which modify the state of the cells but not their number. The evolution
due to conservative encounters modifies the progression of tumor cells and
the activation of immune cells; Cell interactions in the case of mass con-
servative encounters will be defined by means of the two quantities : the
encounter rate ηkl and the transition probability density ψkl, where ηkl(y, z)
denotes the number of encounters per unit volume and unit time between cell
pairs of the (i, j)th populations with states y and z, respectively, we have

ηkl(x, y) = ηkl(y, x)

and ψkl(y, z, x) denotes the probability of transition of the ith cell to the state
x, given its initial state y and the state z of the encountering cells belonging
to the jth population.

Assumption 4.4. Proliferating cells will be described by the vital birth rate
βk(., x) where βk denotes the number of cells produced per unit volume and
unit time of the (i)th species with state x.
Destructive cells will be described by the vital death rate µk(., x) which is the

9
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number of ith species with state x destroyed.
In this case, these functions depend also on the population quantity

P (t) = (P1(t), ..., Pn(t))
T .

The evolution equation obtained using the above assumption consists of the140

following system of n coupled integro differential equations:




∂uk(t, x)

∂t
+

∂
(
vk(P (t), x)uk(t, x)

)
∂x︸ ︷︷ ︸

Self activity−growth

+µk(P (t), x)uk(t, x)︸ ︷︷ ︸
Aptosis

=

n∑
j=1

Qkl(uk, ul)(t, x)

︸ ︷︷ ︸
Transfer

+

n∑
j=1

∫ 1

0
βk(P (t), x)uk(t, x)dx

︸ ︷︷ ︸
Distributed Proliferation

,

vk(P (t), 0)uk(t, 0) =

∫ 1

0
βk(P (t), x)uk(t, x)dx

︸ ︷︷ ︸
Punctual proliferation

uk(t, 0) = fi0(x),

(4.1)

where

Qkl(uk, ul) = Qkl+(uk, ul)−Qkl−(uk, ul) (4.2)

with

Qkl+(uk, ul)(t, x) =

∫ 1

0

∫ 1

0
ηkl(y, z)ψkl(y, z, x)uk(t, y)ul(t, z)dydz,(4.3)

Qkl−(uk, ul)(t, x) = uk(t, x)

∫ 1

0
ηkl(x, y)ul(t, y)dy. (4.4)

Qkl+ and Qkl− correspond, respectively, to the gain and loss of cells in the
state x due to conservative encounters.145

4.2. Qualitative Analysis

This Section deals with the asymptotic behaviour of a two population
model of the type classified as (4.1) as t → ∞.

150

More precisely, the general framework proposed in Section 4.1 can be
specialized to model the immune competition at the cellular level between
immune cells and abnormal cells. The following specific assumptions will be
needed:

10
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10

Assumption 4.5. The system is constituted by two interacting cell popula-155

tions: environmental and immune cells, labelled, respectively, by the indexes
i = 1 and i = 2. homogeneously distributed in space.

Assumption 4.6. The functional state of each cell is described by a real
variable x ∈ [0, 1]. For the environmental cells, the above variable refers
to the natural state (normal cells) for x = 0 and to the abnormal state160

(abnormal cells) for x ∈]0, 1]. For the immune cells, x = 0 correspond to
non activity or inhibition; x ∈]0, 1] correspond to activation.

Assumption 4.7. The encounter rate is assumed to be constant and equal
to unity for all interacting pairs, hence ηkl = η = 1, ∀i, j = 1, 2.

Assumption 4.8. The transition probability density related to conservative
interactions is assumed to be delta functions :

ψkl(y, z, x) = δ(x−mkl(y, z))

where mkl corresponds to the output which may depend on the microscopic165

state of the interacting pair. The basic restrictions on mkl are their non neg-
ativity, and also 0 ≤ mkl(y, z) ≤ 1, 0 ≤ y, z ≤ 1, to ensure that dominance
values range between zero and unity.

• Conservative encounters of abnormal cells: Cells of the first
population show a tendency to degenerate with most probable output
given as follows:

m11(y, z) = (1− α11)y + α11,

where 0 ≤ α11 < 1 is a parameter related to the inner tendency of both
a normal and an abnormal cell to degenerate. Here, we consider that170

the cells do not show a natural tendency to degenerate, i.e. α11 = 0.

If a abnormal cell encounters an active immune cell, its state decreases
with most probable output given as follows:

m12(y, z) = (1− α12)y,

where 0 ≤ α12 < 1 is a parameter which indicates the ability of the
immune system to reduce the state of cells of the first population.

11
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• Conservative encounters of active immune cells: The only en-
counters with non-trivial output are those between active immune cells
and abnormal cells:

m21(y, z) = (1− α21)y, m22(y, z) = y

where 0 ≤ α21 < 1 is a parameter which indicates the ability of the175

abnormal cells to inhibit immune cells. For more detail see [4].

The last assumption concerns the growth rate and the proliferation rate

Assumption 4.9. We assume that a fraction of the energy is channelled
to growth of the activity, and a fraction to the punctual proliferation. For
more simplicity we assume that there is no distributed proliferation. We also180

assume that for an individual of activity x in the kth subpopulation, g(P )x is
the rate at which maintenance needs energy and g(P )(1−x) is what remains
for growth.
Mathematically, we assume, according to the framework of the present pa-
per, no dynamics for the Energy resource and, therefore, the Energy resource185

uptake rate g will depend on the total population P , i.e.,g = g(P ). In partic-
ular, g(P ) will be a smooth decreasing positive function satisfying g(0) = 1
and tending to 0 when P goes to ∞.

Thus we have the following sub-models for the growth and reproduction
rates for each sub-population

vk(P, x) = vkg(P )(1− x), and βk(P, x) = βkg(P )x, (4.5)

where vk and βk are positive constants. In addition, we will assume the
mortality rate mk, for an individual in the ith subpopulation, a function of190

P only and positive. Based on the above modelling of cell interactions, the
evolution system becomes as follows, for all i �= j = 1, 2,

∂uk(t, x)

∂t
+ vkg(P (t))

∂
(
(1− x)uk(t, x)

)

∂x
+ µk(P (t))uk(t, x)

=
1

1− αkl
uk(t,

x

1− αkl
)χ(

x

1− αkl
)P l(t)− uk(t, x)P l(t),(4.6)

vkuk(t, 0) = βk

∫ 1

0
xuk(t, x)dx, (4.7)

uk(t, 0) = fi0(x), (4.8)

12

Where χ is the characteristic function for [0, 1], shown below:

χ(x) = 1, for 0 ≤ x ≤ 1; χ(x) = 0 for x < 0, x > 1.

The factors χ(
x

1− αkl
) must appear in (4.6) − (4.8) to ensure that we are

integrating well-defined quantities on [0, 1] .195

We are now in a position to investigate the asymptotic behaviour of
(4.6) − (4.8) as t → ∞. To be precise, we are interested in the evolution of
the zeroth order moment {P k(t)}2i=1 and the first order moments, related
to the activity of each population:

Ak(t) =

∫ 1

0
xuk(t)(x)dx, i = 1, 2

Integrating (4.6) and multiplying (4.6) by x and integrating also, and using
(4.7) in both integrals, we obtain, after an integration by parts in the second
one, the following ordinary differential equations system, for all (i �= j = 1, 2)

Ṗ k(t) = βkg(x)Ak(t)− µk(x)P k(t) (4.9)

Ȧk(t) = vkg(x)P k(t)−
(
vkg(x) + µk(x) + αklP l

)
Ak(t), (4.10)

This system is supplemented by initial conditions200

P k(0) =

∫ 1

0
uk(0, x)dx, Ak(0) =

∫ 1

0
xuk(0, x)dx ≤ P k(0). (4.11)

To this end, we impose additional the following Assumption on the param-
eter µk, for (i = 1, 2).

• (H4
µ) µk is strictly quasi-increasing in R+ × R+ [i.e. The function

hk(y1, y2) is said to be strictly quasi-increasing (resp. -decreasing) in
a subset C of R2 if hk is strictly increasing (resp. decreasing) in yl for205

j �= i and there exists a constant Mk ≥ 0 such that hk(y1, y2) +Mkyk

is strictly increasing (resp. decreasing) for (y1, y2) ∈ C. ]

Notice that there exists only positive , P k,0 > 0, (i = 1, 2), such that
δ1(P

0
1 , 0) = β1 and δ2(0, P

0
2 ) = β2, if and only if

δk(0, 0) < βk, (i = 1, 2). (4.12)

13
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Moreover, For all P k > Pk, 0, (i = 1, 2), β1 < δ1(P1, 0), β2 < δ2(0, P2).210

Any region of the form

Ω = {h = (P1, A1, P2, A2) ∈ R4 : 0 ≤ Ak ≤ P k ≤ P 1,k, (i = 1, 2)}

with P k,1 > Pk, 0, is positively invariant. This assumption will be confirmed
by the following theorem.
The ODEs (4.9)− (4.11) can be written in the compact form as :

{
ḣ(t) = G(h),
h(0) = h0 ∈ Ω

(4.13)

The non-linear operator G is defined on Ω by G =
(
G1, G2, G3, G4),

Gk(h) = βkg(x)Ak(t)− µk(x)P k(t), for (i = 1, 3) and215

Gk(h) = vkg(x)P k(t)−
(
vkg(x) + µk(x) + αklP l

)
Ak(t), for (i = 2, 4).

Theorem 4.10. If conditions (H3
µ) − (H4

µ) and (4.12) are satisfied, then
there exists a unique mild solution h(t) ∈ Ω of the initial value problem
(4.13), for all h(0) ∈ Ω and for all t ≥ 0.

Proof. In order to apply the result given in Theorem 5.1 [11, p. 238], we
need the following lemmas concerning the nonlinear operator G, involved in
the dynamics (4.9)− (4.10). Easy manipulations show that: for h1, h2 ∈ Ω,

‖G(h1)−G(h2)‖ ≤ l‖h1 − h2‖.

Consequently, G is an l-dissipative operator on Ω [11, p. 245]. Finally, the
following subtangential condition holds: For each h ∈ Ω,

lim
τ→0+

1

τ
d(h+ τG(h); Ω) = 0. (4.14)

Since G is a continuous function from Ω into R4 that maps bounded sets220

into bounded sets and due to the above previous lemmas, for each h0 ∈ Ω
there is a unique mild solution h ∈ Ω to (4.13) on [0,∞).

4.3. Equilibrium Profiles

We now investigate the existence of steady states of (4.9)− (4.11). Let

f ss =
(
P1, A1, P2, A2

)T

be a steady state of (4.9)− (4.11). It satisfies, for all (i �= j = 1, 2)

βkAk = δk(x)P k (4.15)

14
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into bounded sets and due to the above previous lemmas, for each h0 ∈ Ω
there is a unique mild solution h ∈ Ω to (4.13) on [0,∞).

4.3. Equilibrium Profiles

We now investigate the existence of steady states of (4.9)− (4.11). Let

f ss =
(
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)T

be a steady state of (4.9)− (4.11). It satisfies, for all (i �= j = 1, 2)

βkAk = δk(x)P k (4.15)

14

vkg(x)P k =
(
vkg(x) + µk(x) + αklP l

)
Ak (4.16)

From (4.15), we find225

P k = 0 or βkvkg(x) =
(
vkg(x) + µk(x) + αklP l

)
δk(x)

Case 4.11. A first steady state,
(
0, 0, 0, 0

)T
.

Let, for (i = 1, 2)

γk = vk

√
1 + 4

βk

vk
− 1

2
> 0,

γk = vk

√
1 + 4

βk

vk
+ 1

2
.

A non-trivial steady states,

f ss
2 =

(
0, 0, P2, A2

)T
, f ss

1 =
(
P1, A1, 0, 0

)T
, f ss =

(
P1, A1, P2, A2

)T

would satisfy the following cases respectively, from (4.15)− (4.16).

Case 4.12. β2A2 = δ2(0, P2)P2 with P2 solution of

γ2 = δ2(0, P2)

In this case, there is only non-trivial equilibrium positive f ss
2 if and only if

δ2(0, 0) < γ2 , (4.17)

When, (4.17), holds P2 is the unique value of P2 such that the un-230

bounded strictly increasing function δ2(0, P2) takes the value γ2, and A2 =
δ2(0, P2)

β2
P2.

Case 4.13. β1A1 = δ1(P1, 0)P1 with P1 solution of

γ1 = δ1(P1, 0).

Analogously, there is only non-trivial equilibrium positive f ss
1 if and only

if

δ1(0, 0) < γ1, (4.18)

In this case, A1 =
δ1(P1, 0)

β1
P1.235

15
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Since, γk < βk, then, notice that δk(0, 0) < γk imply inequality (4.12).

Case 4.14. βkAk = δk(P1, P2)P k

with P solution of

P1 =
g(P1, P2)

(
γ2 − δ2(P1, P2)

)(
δ2(P1, P2) + γ2

)

α21δ2(P1, P2)
, (4.19)

P2 =
g(P1, P2)

(
γ1 − δ1(P1, P2)

)(
δ1(P1, P2) + γ1

)

α12δ1(P1, P2)
(4.20)

Although at this stage we cannot carry out existence and stability analysis
for Case 4.14. It is interesting to observe that, when (4.19) − (4.20) are240

independent of P2 and P1 respectively, the existence and the instability of
this positive equilibrium are guaranteed (see the following section).

Throughout this paper, we consider that

• (H5
µ) µ

k will be a smooth function in R+ ×R+.

For simplicity, let

gk =
∂g

∂P k
, δkl =

∂δk

∂P l
µkl =

∂µk

∂P l
and bkl = δklP kg, (i, j = 1, 2).

4.4. Application245

Consider the case when (4.19) − (4.20) are independent of P2 and P1

respectively:

P1 =
g(P1, 0)

(
γ2 − δ2(P1, 0)

)(
δ2(P1, 0) + γ2

)

α21δ2(P1, 0)
, (4.21)

P2 =
g(0, P2)

(
γ1 − δ1(0, P2)

)(
δ1(0, P2) + γ1

)

α12δ1(0, P2)
(4.22)

This system, has a unique solution (P ∗
1 , P

∗
2 )

Indeed, to obtain the desired result, it suffices to show the existence of250

solution P ∗
1 to (4.21), or equivalently to

δ2(P1, 0) = D2(P1), (4.23)

16

with

D2(P1) =

−(
α21P1

g(P1, 0)
+ v2) +

√
(
α21P1

g(P1, 0)
+ v2)

2 + 4β2v2

2
. (4.24)

D2(P1) is an decreasing positive function satisfying D2(0) = γ2 and tending
to 0 when P1 goes to ∞. Since, δ2(P1, 0) tending to ∞ when P1 goes to
∞ then by the monotonicity of δ2, into account δ2(0, 0) < γ2, the equation255

(4.23) has a unique positive solution P ∗
1 .

A similar argument shows that P ∗
2 is a unique solution to (4.22).

It is clear that, f ss
∗ = (P ∗

1 , A
∗
1, P

∗
2 , A

∗
2) is a non-trivial steady state of the

following system260

Ṗ1(t) = β1g(0, P2)A1(t)− µ1(0, P2)P1(t)

Ṗ2(t) = β2g(P1, 0)A2(t)− µ2(P1, 0)P2(t)

Ȧ1(t) = v1g(0, P2)P1(t)−
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v1g(0, P2) + µ1(0, P2) + α12P2

)
A1(t),

Ȧ2(t) = v2g(P1, 0)P2(t)−
(
v2g(P1, 0) + µ2(P1, 0) + α21P1

)
A2(t),

P k(0) =
∫ 1
0 uk(0, x)dx, Ak(0) =

∫ 1
0 xuk(0, x)dx ≤ P k(0).

(4.25)

with, A∗
1 =

δ1(0, P
∗
2 )

β1
P ∗
1 et A∗

2 =
δ2(P

∗
1 , 0)

β2
P ∗
2 .

Moreover,

Lemma 4.15. The critical point f ss
∗ is unstable.

4.5. Asymptotic Stability265

Now, we study the local stability of the equilibrium f ss.
The positive equilibrium f ss is locally stable if all eigenvalues of the

Jacobian Matrix J(f ss) have negative real parts.

Lemma 4.16. If δ2(0, 0) < γ2, then the first steady state , (0, 0, 0, 0) is
unstable.270

Proof. The eigenvalues λ of the Jacobian matrix, given at f ss = 0 by :
−µ1(0, 0), −v1−µ1(0, 0), −µ2(0, 0)−γ2 and −µ2(0, 0)+γ2, under condition
δ2(0, 0) < γ2, (0, 0, 0, 0) is unstable since −µ2(0, 0) + γ2, is positive. Now
we study the local stability of the positive equilibrium f ss

1 (resp. f ss
2 )
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Since, γk < βk, then, notice that δk(0, 0) < γk imply inequality (4.12).
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Ṗ2(t) = β2g(P1, 0)A2(t)− µ2(P1, 0)P2(t)
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unstable.270
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δ2(0, 0) < γ2, (0, 0, 0, 0) is unstable since −µ2(0, 0) + γ2, is positive. Now
we study the local stability of the positive equilibrium f ss

1 (resp. f ss
2 )

17



90

On some models of active cell-to-cell biological interactionsAhmed NOUSSAIR

Frontiers in Science and Engineering - Vol. 6 - n° 1 - 2016
An International Journal Edited by The Hassan II Academy of Science and Technology

Lemma 4.17. If P 1 > P ∗
1 (resp. P 2 > P ∗

2 ) then the point f ss
1 (resp. f ss

2 )275

is locally asymptotically stable. If 0 < P 1 < P ∗
1 (resp. 0 < P 2 < P ∗

2 ) then
f ss
1 (resp. f ss

2 ) is unstable.

Proof. The eigenvalues λ of the Jacobian matrix at f ss = f ss
1 , are solutions

of the following characteristic equations :

(λ+ µ2)
2 + (λ+ µ2)(v2g + α21P1)− β2g

2v2 = 0 (4.26)

(λ+ µ1)
2 + (λ+ µ1)(v1g + b11) + b11g(v1 + δ1)− β1g

2v1 = 0 (4.27)

The solutions of the equation (4.26) are given by280

g(P 1, 0)
(
D2(P 1)−δ2(P 1, 0)

)
, −g(P 1, 0)[D2(P 1)+δ2(P 1, 0)+v2+α21

P 1

g(P 1, 0)
]

Where D2 is given by (4.24).

Moreover, since (vk)2 + 4βkvk = (2δk + vk)2, (i = 1, 2), the solutions of
the equation (4.27) given by

−g(P 1, 0)(v1 + γ1)− µ1(P 1, 0) and − b11(P 1, 0)

If, P 1 > P ∗
1 , by the monotonicity of δ2 and D2, (see Section 4.4),

g(P 1, 0)
(
D2(P 1)− δ2(P 1, 0)

)
is negative, then (P 1, A1, 0, 0) is stable.

285

If P 1 < P ∗
1 , g(P 1, 0)

(
D2(P 1)− δ2(P 1, 0)

)
is positive, then f ss

1 is unsta-
ble.
A similar argument shows that if P 2 > P ∗

2 , the point f ss
2 is locally asymp-

totically stable and If 0 < P 2 < P ∗
2 , f

ss
2 is unstable.

290

5. Numerical experiments

In this section, we report some numerical experiments. We use a uniform
spatial grid over the interval [0, 1] with ∆x = 0.01. The time mesh size is
∆t = r∆x, with a rate r = 0.5 destined to control stability, and our CFL
stability criterion is never exceeded.295

We deals with the simulation of the dynamics of a two population model
of the type classified as Model (4.6),. The transition probability density
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related to conservative interactions is assumed to be approximated by a
Gaussian distribution function with the output defined by the mean value
mkl, which may depend on the activation of the interacting pairs, and with
a finite variance skl :

ψkl(x, y, z) =
1√
2πskl

exp
(
− (z −mkl(x, y))2

2skl
)
.

In figures, the initial condition is the Gaussian distribution function with
the mean value µ = 0.3 and a finite variance σ = 0.01, for both densities.
The graphs in the figures show the evolution in time of the densities of the
system: the continuous line is the evolution of the density of the immune300

cells, while the dashed line is the evolution of the abnormal density.

In Experiments 2, and 3 , we assume that a fraction αk ∈ (0, 1) of
ingested energy is channeled to growth and maintenance, and a fraction
(1 − αk) to proliferation. We also assume that for an individual of size x
in the kth subpopulation, αkgk(P)x is the rate at which maintenance needs
energy and αkgk(P)(1 − x) is what remains for growth . Thus we have
the following sub-models for the growth and reproduction rates for each
subpopulation

vk(P, x) = v̄kαkgk(P)(1− x), and βk(P, x) = β̄k(1− αk)gk(P)x, (5.1)

g = (g1, g2) will be a smooth quasi monotone decreasing, in R+×R+, g will
be positive function satisfying g(0) = (1, 1) and tending to (0, 0) when P
goes to ∞. where v̄k and β̄k are positive constants. In addition, we assume
that the mortality rate for an individual in the kth subpopulation is given
by

µk(P) = γk − dk +
akP

1 + bkP
2

ckP
1 + dkP

2 + ak
, γk =

−v̄k +
√
(v̄k)2 + 4β̄kv̄k

2
.

The function gk here is : gk(P) = 1−
a′kP

1 + b′kP
2

c′kP
1 + d′kP

2 + ck
with (dk, ak, bk, ck, dk, a

k)

and (a′k, b
′
k, c

′
k, d

′
k, c

k) are the constants positives.
The results of the simulations are reported in the following Figures, which305

correspond to different values of the parameters ( see Table 1).
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Parameter Experiment1 Experiment 2 Experiment3

v̄1 10 10 10

v̄2 0.3 0.3 0.3

β̄1 0.2 20 0.20

β̄2 0.3 30 30

α1 0.1 0.1 0.1

α2 0.2 0.2 0.2

c1 2 0.8 2

c2 2 9 9

d1 3.10−4 3.10−5 3.10−5

d2 0 10−5 10−5

a1 1 10 0.1

a2 1 20 0.2
q 0.2

√ √

e 0.9
√ √

σ12 0.9 0.1 0.9
σ21 0.1 0.9 0.1

(a1, b1, c1, d1)
√

(0, 1, 0, 1) (1,0,1,0)
(a2, b2, c2, d2)

√
(1, 0, 1, 0) (0,1,0,1)

(a′
1, b

′
1, c

′
1, d

′
1)

√
(0,1,0,1) (1,0,1,0)

(a′
2, b

′
2, c

′
2, d

′
2)

√
(1,0,1,0) (0,1,0,1)

Table 1: Different values of the model parameters

In Experiment 1, it is, also, interesting to notice that, for

β1(P) = β̄1α1 P2

c1 +P2 (1− x), β2(P) = β̄2α2(1− P2

c2
)(1− x)

and

µ2(P) =
eP1

1 + qP2 , µ1(P) = γ1 − d1,

that is, the predator-prey system (see Experiment 1 in Table 1), as shown
in Figures 2 and 3. If σ12 < σ21, the ability of abnormal cells to inhibit
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Figure 2: ”Experiment 1”: Total depletion of cells

20

immune cells is greater than the ability of immune cells to reduce the state310

of abnormal cells. The final output, if σ12 > σ21, is reduction of the state of
abnormal cells until their complete depletion and a final survival of immune
cells, as shown in Figures 3 .
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Figure 3: ”Experiment 1”: Effect of the type of parameter σ for density
evolution of both population at different spaces: x = 25, 50, 75, 100.

In Figures 2, both abnormal and immune cells reduced during the com-
petition. However, in Figures 4 left and 4 right, only once cell popula-315

tion survives and the other is completely depleted: the probability of the
2-population is an increasing function of t and the probability of the 1-
population is a decreasing function of t.

6. Appendix: Proof of theorem320

Proof.

Existence of a limit u

We first prove the existence of a limit u to u∆ as the mesh size ∆x goes to
zero. Then we prove that this limit is a solution of the continuous problem
(??).325

The proof of existence of the limit u(t, x) is based on the compact canon-
ical embedding from W 1,1(Ω) into L1(Ω). Let I(u∆), defined on [0, T ]×ΩL,

21



93

On some models of active cell-to-cell biological interactionsAhmed NOUSSAIR

Frontiers in Science and Engineering - Vol. 6 - n° 1 - 2016
An International Journal Edited by The Hassan II Academy of Science and Technology

Parameter Experiment1 Experiment 2 Experiment3

v̄1 10 10 10

v̄2 0.3 0.3 0.3

β̄1 0.2 20 0.20

β̄2 0.3 30 30

α1 0.1 0.1 0.1

α2 0.2 0.2 0.2

c1 2 0.8 2

c2 2 9 9

d1 3.10−4 3.10−5 3.10−5

d2 0 10−5 10−5

a1 1 10 0.1

a2 1 20 0.2
q 0.2

√ √

e 0.9
√ √

σ12 0.9 0.1 0.9
σ21 0.1 0.9 0.1

(a1, b1, c1, d1)
√

(0, 1, 0, 1) (1,0,1,0)
(a2, b2, c2, d2)

√
(1, 0, 1, 0) (0,1,0,1)

(a′
1, b

′
1, c

′
1, d

′
1)

√
(0,1,0,1) (1,0,1,0)

(a′
2, b

′
2, c

′
2, d

′
2)

√
(1,0,1,0) (0,1,0,1)

Table 1: Different values of the model parameters

In Experiment 1, it is, also, interesting to notice that, for

β1(P) = β̄1α1 P2

c1 +P2 (1− x), β2(P) = β̄2α2(1− P2

c2
)(1− x)

and

µ2(P) =
eP1

1 + qP2 , µ1(P) = γ1 − d1,

that is, the predator-prey system (see Experiment 1 in Table 1), as shown
in Figures 2 and 3. If σ12 < σ21, the ability of abnormal cells to inhibit

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

t

P
1

(t
)

Total population of Environmental cells

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

P
2

(t
)

Total population of Immune cells

Figure 2: ”Experiment 1”: Total depletion of cells

20
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of abnormal cells. The final output, if σ12 > σ21, is reduction of the state of
abnormal cells until their complete depletion and a final survival of immune
cells, as shown in Figures 3 .
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In Figures 2, both abnormal and immune cells reduced during the com-
petition. However, in Figures 4 left and 4 right, only once cell popula-315

tion survives and the other is completely depleted: the probability of the
2-population is an increasing function of t and the probability of the 1-
population is a decreasing function of t.

6. Appendix: Proof of theorem320

Proof.

Existence of a limit u

We first prove the existence of a limit u to u∆ as the mesh size ∆x goes to
zero. Then we prove that this limit is a solution of the continuous problem
(??).325

The proof of existence of the limit u(t, x) is based on the compact canon-
ical embedding from W 1,1(Ω) into L1(Ω). Let I(u∆), defined on [0, T ]×ΩL,
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Figure 4: ”Experiment 2 left and Experiment 3 right”: Depletion of abnor-
mal cells and immune activation

be the interpolate of degree one of u∆ at the vertices of each rectangle
[xi, xi+1]× [tn, tn+1]; where it is given by

I(u∆)(x, t) = uni + (uni+1 − uni )
x− i∆x

∆x + (un+1
i − uni )

t− nr∆x
r∆x

+(un+1
i+1 − un+1

i − uni+1 + uni )
(x− i∆x)(t− nr∆x)

r(∆x)2

, (6.1)

I(u∆) is continuous with

|I(u∆)|L∞([0,T ]×ΩL) = |u∆|L∞([0,T ]×ΩL) = sup
n,i

|uni | (6.2)

and differentiable inside each rectangle. Thus we obtain

∫ ∫
|∂I(u

∆)

∂t
|dxdt ≤

N∑
n=0

∑
i≤IL

|un+1
i − uni |∆x. . (6.3)

In the same way

∫ ∫
|∂I(u

∆)

∂x
|dxdt =

N∑
n=0

∑
i≤IL

|uni+1 − uni |r∆x . (6.4)

In the other hand one can check that the numerical scheme (2.2) satisfies
the following a priori estimates

22

sup
i

|un+1
i | ≤ (1 + C1∆t) sup

i
|uni |

IL∑
i=1

|un+1
i+1 − un+1

i | ≤ (1 + C2∆t)

IL∑
i=1

|uni+1 − uni |

IL∑
i=1

|un+1
i − uni | ≤

IL∑
i=1

|uni+1 − uni |

(6.5)

where C1 and C2 are two constant independent of n.330

Let u0 ∈ L∞(ΩL), (i.e supi |u0i | ≤ C) and with the total variation

TV (u0(x)) =
∑IL

i=1 |u0(xi+1) − u0(xi)| be bounded, we have,by applying
the discrete Gronvall lemma to the estimates (6.5) and using successively
(6.2)and (6.3),(6.4), it follows that u∆ is bounded and contains a subse-
quence u∆p weakly star convergent to a limit u ∈ L∞([0, T ]×ΩL) bounded
by |u0|∞L (ΩL). It follows also that

|I(u∆)|L∞([0,T ]×ΩL) + |∂I(u
∆)

∂x
|L1([0,T ]×ΩL) + |∂I(u

∆)

∂t
|L1([0,T ]×ΩL) ≤ M.

(6.6)
Therefore from

{
I(u)∆

}
associated to

{
u∆

}
, we extract a subsequence con-

vergent to
{
I(u)∆p

}
in L1

loc(]0, T [×ΩL). Then we verify that
{
I(u)∆p − u∆p

}
tends to zero in L1 , for all bounded open sets ]0, T [×ΩL. Since the associate
subsequence u∆ weakly star converges to a function u ∈ L∞(]0, T [×ΩL), and
since in the other hand

{
I(u∆p)

}
is convergent in L1

loc(]0, T [×ΩL), we have

u∆ converges to u in L1
loc(]0, T [×ΩL). (6.7)

This end the proof of the existence of a limit.

Convergence of Q∆(u∆) to Q(u)

Now we prove the following lemma

Lemma 6.1. Q∆(u∆) converges to the continuous transfert operator Q(u)
, u being the limit function of u∆ as ∆x goes to zero.335

Proof.
Let us write

∣∣F ,∆(u∆)− T (u)
∣∣
1
≤ |Q∆(u∆)−Q(u∆)|1 + |Q(u∆)−Q(u)|1
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Since The transfert operator Q is Lipschitz and u∆ converges to u the sec-

ond term of the right hand side of the above inequality

∫ 1

0
|Q∆(u∆)(x) −

Q(u)(x)|dx −→ 0 as the mesh size ∆x goes to zero.
Let now calculate Q(u∆)(x).

T̂ (u∆)(x) =
∑
j

∫ xj+1

xj

π1(x)u
∆(xi + f1(x)p)u

∆(xi − (1− f1(x))p)dx

+
∑
j

∫ xj+1

xj

π2(x)u
∆(xi + f2(x)p)u

∆(xi − (1− f2(x))p)dx.

=
∑
j

∫ xj+1

xj

π1(x)dxu
n
i+f1(pj)j

uni−(1−f1(pj))j

+
∑
j

∫ xj+1

xj

π2(pj)dxu
n
i+f2(pj)j

uni−(1−f2(x))j
.

but using the mean values of π1 and π2

π1(lj) =

∫ xj+1

xj
π1(x)dx

∆x
and π2(lj) =

∫ xj+1

xj
π2(x)dx

∆x
(6.8)

we conclude that T (u∆) − F∆(u∆) = 0. This complete the proof of the340

lemma.

Weak solution

Now we consider the consistency of the scheme, it means that this limit
u of the discrete solutions u∆ is a weak solution of the continuous problem.

For all smooth φ ∈ C1([0, T ]×ΩL) with compact support in [0, T [×[0, 1],
we define

∀(t, x) ∈ [xi−1, xi[×[tn, tn+1[, φ∆(t, x) = φn
i =

1

∆t∆x

∫ tn+1

tn

∫ xi

xi−1

φ(t, x)dt dx.

Multiplying the scheme (2.2) by ∆xφn
i we get,345

∑
i,n

(un+1
i − uni )φ

n
i −∆t

∑
i,n

Fn
i φ

n
i ∆x = 0, (6.9)

then summing by part we get

∑
i,n

(
un+1
i (φn

i − φn+1
i )

)
∆x−∆t

∑
i,n

Fn
i φ

n
i ∆x−

∑
i

u0iφ
0
i∆x = 0 (6.10)
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which is equivalent to

∫ T

0

∫

ΩL

u∆(t, x)
φ∆(t+∆t, x)− φ∆(t, x)

∆t
dx dt

+

∫ T

0

∫

ΩL

F ,∆(u∆)(t, x)φ∆(t, x)dx dt

+

∫

ΩL

u∆(0, x)φ∆(0, x)dx = 0,

(6.11)

we pass to the limit ∆x → 0, we obtain

∫ T

0

∫

ΩL

u(t, x)
∂φ

∂t
(t, x)dxdt+

∫ T

0

∫

ΩL

Q(u)φ(t, x) dx dt

+

∫

ΩL

u(0, x)φ(0, x)dx = 0
(6.12)

which means that the limit u obtained using the discrete scheme is a weak
solution of the problem (3.1) with the initial data u0(x).

7. Conclusion350

In the first part of the paper, a discret model was formulated to describe
some transfer rules in population dynamics. Population was structured by
a discret variable corresponding to size of transferable material. We have
proved the convergence to a continuous model which is one-dimensional
Boltzmann-type equation of active particles with ovoiding the spatial me-355

chanics aspect. Mathematical analysis was performed, namely existence of
solutions, the preservation of individuals number, the preservation of the
number and the mass of the cells. In the second part of the paper, we
have shown the global existence and the uniqueness of the state trajecto-
ries for a mathematical model of a population consisting of several species360

with coupled interactions and nonlocal boundary conditions. In this case
the nonlinear growth, vital birth and death rates depending on the space
or/and on the total population. It has also been proved that the trajec-
tories are positive. Specifically, this paper is an analysis of the behaviour
of a model of competition between progressing (tumour) cells and immune365

cells. The analysis refers to class of models proposed in [4]. The nonlinear
operator involved in the dynamics is characterized by three phenomenolog-
ical parameters related to mass conservative encounters : α12 and α21. The
asymptotic behaviors of depend on the inequality µk(0, 0) < γk, (i = 1, 2),
without into account the parameters αkl of conservative interactions, where370

25

γk depend of known data of the vital birth and the growth rates vk, βk.
The qualitative analysis provides information on the first order moments
Ak(.), (i = 1, 2). Note that this is relevant information towards the bio-
logical interpretation considering that the total population simply give the
number of cells, while the first order moments also take into account the375

biological activities of the cells.
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1 Introduction
Let L := −∆ + V be a Schrödinger operator with a non-negative potential
V . It is the self-adjoint operator associated with the form

a(u, v) :=
∫

Rd
∇u.∇vdx +

∫

Rd
V uvdx

with domain

D(a) = {u ∈ W 1,2(Rd),
∫

Rd
V |u|2dx < ∞}.
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Paley-Stein functions for Schrödinger operators −∆ + V with non-
negative potentials V . These functions are proved to be bounded on
Lp for all p ∈ (1, 2). The situation for p > 2 is different. We prove
for a class of potentials that the boundedness on Lp, for some p > d,
holds if and only if V = 0.
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Let L := −∆ + V be a Schrödinger operator with a non-negative potential
V . It is the self-adjoint operator associated with the form

a(u, v) :=
∫
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∫
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V uvdx

with domain

D(a) = {u ∈ W 1,2(Rd),
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We denote by (e−tL)t≥0 the semigroup generated by (minus) L on L2(Rd).
Since V is nonnegative, it follows from the Trotter product formula that

0 ≤ e−tLf ≤ et∆f (1)

for all t ≥ 0 and 0 ≤ f ∈ L2(Rd) (all the inequalities are in the a.e. sense). It
follows immediately from (1) that the semigroup (e−tL)t≥0 is sub-Markovian
and hence extends to a contraction C0-semigroup on Lp(Rd) for all p ∈
[1, ∞). We shall also denote by (e−tL)t≥0 the corresponding semigroup on
Lp(Rd).

The domination property (1) implies in particular that the corresponding
heat kernel of L is pointwise bounded by the Gaussian heat kernel. As a
consequence, L has a bounded holomorphic functional calculus on Lp(Rd)
and even Hörmander type functional calculus (see [6]). This implies the
boundedness on Lp(Rd) for all p ∈ (1, ∞) of the horizontal Littlewood-
Paley-Stein functions:

gL(f)(x) :=
[∫ ∞

0
t|

√
Le−t

√
Lf(x)|2dt

]1/2

and
hL(f)(x) :=

[∫ ∞

0
t|Le−tLf(x)|2dt

]1/2
.

Indeed, these functions are of the form (up to a constant)

SLf(x) =
[∫ ∞

0
|ψ(tL)f(x)|2 dt

t

]1/2

with ψ(z) =
√

ze−
√

z for gL and ψ(z) = ze−z for hL. The boundedness of
the holomorphic functional calculus implies the boundedness of SL (see [8]).
Thus, gL and hL are bounded on Lp(Rd) for all p ∈ (1, ∞) and this holds
for every nonnegative potential V ∈ L1

loc(Rd).
Now we define the so-called vertical Littlewood-Paley-Stein functions

GL(f)(x) :=
(∫ ∞

0
t|∇e−t

√
Lf(x)|2 + t|

√
V e−t

√
Lf(x)|2 dt

)1/2

and
HL(f)(x) :=

(∫ ∞

0
|∇e−tLf(x)|2 + |

√
V e−tLf(x)|2 dt

)1/2
.

Note that usually, these two functions are defined without the additional
terms t|

√
V e−t

√
Lf(x)|2 and |

√
V e−tLf(x)|2.

The functions GL and HL are very different from gL and hL as we shall see
in the last section of this paper. If V = 0 and hence L = −∆ it is a very well
known fact that GL and HL are bounded on Lp(Rd) for all p ∈ (1, ∞). The
Littlewood-Paley-Stein functions are crucial in the study of non-tangential

2
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2

limits of Fatou type and the boundedness of Riesz transforms. We refer
to [14]-[16]. For Schrödinger operators, boundedness results on Lp(Rd) are
proved in [10] for potentials V which satisfy |∇V |

V + ∆V
V ∈ L∞(Rd). This

is a rather restrictive condition. For elliptic operators in divergence form
(without a potential) boundedness results on Lp(Rd) for certain values of p
are proved in [2]. For the setting of Riemannian manifolds we refer to [4]
and [5]. Again the last two papers do not deal with Schrödinger operators.

In this note we prove that GL and HL are bounded on Lp(Rd) for all
p ∈ (1, 2] for every nonnegative potential V ∈ L1

loc(Rd). That is
∫

Rd

(∫ ∞

0
t|∇e−t

√
Lf(x)|2 + t|

√
V e−t

√
Lf(x)|2 dt

)p/2
dx ≤ C

∫

Rd
|f(x)|pdx

and similarly,
∫

Rd

(∫ ∞

0
|∇e−tLf(x)|2 + |

√
V e−tLf(x)|2 dt

)p/2
dx ≤ C

∫

Rd
|f(x)|pdx

for all f ∈ Lp(Rd).
Our arguments of the proof are borrowed from the paper [4] which we adapt
to our case in order to take into account the terms with

√
V in the definitions

of GL and HL. Second we consider the case p > 2 and d ≥ 3. For a wide
class of potentials, we prove that if GL (or HL) is bounded on Lp(Rd) for
some p > d then V = 0. Here we use some ideas from [7] which deals with
the Riesz transform on Riemannian manifolds. In this latter result we could
replace GL by

(∫ ∞
0 t|∇e−t

√
Lf(x)|2dt

)1/2
and the conclusion remains valid.

Many questions of harmonic analysis have been studied for Schrödinger
operators. For example, spectral multipliers and Bochner Riesz means [6]
and [12] and Riesz transforms [12], [1], [13] and [3]. However little seems
to be available in the literature concerning the associated Littlewood-Paley-
Stein functions GL and HL. Another reason which motivates the present
paper is to understand the Littlewood-Paley-Stein functions for the Hodge
de-Rham Laplacian on differential forms. Indeed, Bochner’s formula al-
lows to write the Hodge de-Rham Laplacian on 1-differential forms as a
Schrödinger operator (with a vector-valued potential). Hence, understand-
ing the Littlewood-Paley-Stein functions for Schrödinger operators L could
be a first step in order to consider the Hodge de-Rham Laplacian. Note
however that unlike the present case, if the manifold has a negative Ricci
curvature part, then the semigroup of the Hodge de-Rham Laplacian does
not necessarily act on all Lp spaces. Hence the arguments presented in this
paper have to be changed considerably. We shall address this problem in a
forthcoming paper.

2 Boundedness on Lp, 1 < p ≤ 2
Recall that L = −∆ + V on L2(Rd). We have

3
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Theorem 2.1. For every 0 ≤ V ∈ L1
loc(Rd), GL and HL are bounded on

Lp(Rd) for all p ∈ (1, 2].

Proof. By the subordination formula

e−t
√

L = 1√
π

∫ ∞

0
e− t2

4s
Le−ss−1/2ds

it follows easily that there exists a positive constant C such that

GL(f)(x) ≤ CHLf(x) (2)

for all f ∈ L1(Rd) ∩ L∞(Rd) and a.e. x ∈ Rd. See e.g. [4]. Therefore it is
enough to prove boundedness of HL on Lp(Rd).
In order to do so, we may consider only nonnegative functions f ∈ L(Rd).
Indeed, for a general f we write f = f+ − f− and since

|∇e−tL(f+ − f−)|2 ≤ 2(|∇e−tLf+|2 + |∇e−tLf−|2)

and
|
√

V e−tL(f+ − f−)|2 ≤ 2(|
√

V e−tLf+|2 + |
√

V e−tLf−|2)

we see that it is enough to prove

‖HL(f+)‖p + ‖HL(f−)‖p ≤ Cp(‖f+‖p + ‖f−‖p),

which in turn will imply ‖HL(f)‖p ≤ 2Cp‖f‖p.
Now we follow similar arguments as in [4]. Fix a non-trivial 0 ≤ f ∈

L1(Rd) ∩ L∞(Rd) and set u(t, x) = e−tLf(x). Note that the semigroup
(e−tL)t≥0 is irreducible (see [12], Chapter 4) which means that for each
t > 0, u(t, x) > 0 (a.e.). Observe that

( ∂

∂t
+ L)up = (1 − p)V up − p(p − 1)up−2|∇u|2.

This implies

p|∇u|2 + V |u|2 = − u2−p

p − 1( ∂

∂t
+ L)up. (3)

Hence, there exists a positive constant cp such that

(HL(f)(x))2 ≤ −cp

∫ ∞

0
u(t, x)2−p( ∂

∂t
+ L)u(t, x)pdt

≤ cp sup
t>0

u(t, x)2−pJ(x)

where
J(x) = −

∫ ∞

0
( ∂

∂t
+ L)u(t, x)pdt.

4
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( ∂
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4

The previous estimate uses the fact that ( ∂
∂t + L)u(t, x)p ≤ 0 which follows

from (3). Since the semigroup (e−tL)t≥0 is sub-Markovian it follows that

‖ sup
t>0

e−tLf(x)‖p ≤ C‖f‖p. (4)

The latter estimate is true for all p ∈ (1, ∞), see [15] (p. 73). Therefore, by
Hölder’s inequality

∫

Rd
|HL(f)(x)|pdx ≤ cp‖f‖

p
2 (2−p)
p

(∫

Rd
J(x)dx

)p/2
. (5)

On the other hand,
∫

Rd
J(x)dx = −

∫

Rd

∫ ∞

0
( ∂

∂t
+ L)u(t, x)pdtdx

= ‖f‖p
p −

∫ ∞

0

∫

Rd
Lu(t, x)pdxdt

= ‖f‖p
p −

∫ ∞

0

∫

Rd
V u(t, x)pdxdt

≤ ‖f‖p
p.

Inserting this in (5) gives
∫

Rd
|HL(f)(x)|pdx ≤ cp‖f‖p

p

which proves the theorem since this estimates extends by density to all
f ∈ Lp(Rd).

3 Boundedness on Lp, p > 2
We assume throughout this section that d ≥ 3. We start with the following
result.

Proposition 3.1. Let 0 ≤ V ∈ L1
loc(Rd). If GL (or HL) is bounded on

Lp(Rd) then there exists a constant C > 0 such that

‖∇e−tLf‖p ≤ C√
t
‖f‖p (6)

for all t > 0 and all f ∈ Lp(Rd).

Proof. Remember that by (2), if HL is bounded on Lp(Rd) then the same
holds for GL.
Suppose that GL is bounded on Lp(Rd). We prove that

‖∇f‖p ≤ C
[
‖L1/2f‖p + ‖Lf‖1/2

p ‖f‖1/2
p

]
. (7)

5
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The inequality here holds for f in the domain of L, seen as an operator
on Lp(Rd).1 In order to do this we follow some arguments from [5]. Set
Pt := e−t

√
L and fix f ∈ L2(Rd). By integration by parts,

‖∇Ptf‖2
2 = (−∆Ptf, Ptf) ≤ (LPtf, Ptf) = ‖L1/2Ptf‖2

2.

In particular,
‖∇Ptf‖2 ≤ C

t
‖f‖2 → 0 as t → +∞.

The same arguments show that t‖∇L1/2Ptf‖2 → 0 as t → +∞. Therefore,

|∇f |2 = −
∫ ∞

0

d

dt
|∇Ptf |2dt

= −
[
t

d

dt
|∇Ptf |2

]∞

0
+

∫ ∞

0

d2

dt2 |∇Ptf |2t dt

≤
∫ ∞

0

d2

dt2 |∇Ptf |2t dt

= 2
∫ ∞

0
(|∇L1/2Ptf |2 + ∇LPtf.∇Ptf)t dt

=: I1 + I2.

Using the fact that GL is bounded on Lp(Rd) it follows that

‖I1‖p/2 ≤ ‖GL(L1/2f)‖2
p ≤ C‖L1/2f‖2

p. (8)

By the Cauchy-Schwartz inequality,

|I2| ≤
(∫ ∞

0
(|∇LPtf |2tdt

)1/2 (∫ ∞

0
(|∇Ptf |2tdt

)1/2

≤ GL(Lf)GL(f).

Integrating gives

‖I2‖p/2
p/2 ≤

(∫

Rd
|GL(Lf)|p

)1/2 (∫

Rd
|GL(f)|p

)1/2
≤ C‖Lf‖p/2

p ‖f‖p/2
p . (9)

Combining (8) and (9) gives (7) for f ∈ D(L)∩L2(Rd). In order to obtain (7)
for all f ∈ D(L) we take a sequence fn ∈ L2(Rd)∩Lp(Rd) which converges in
the Lp-norm to f . We apply (7) to e−tLfn (for t > 0) and then let n → +∞
and t → 0.

For f ∈ Lp(Rd) we apply (7) to e−tLf and we note that ‖L1/2e−tLf‖p ≤
C√

t
‖f‖p and ‖Le−tLf‖p ≤ C

t ‖f‖p. Both assertions here follow from the
analyticity of the semigroup on Lp(Rd) (see [12], Chap. 7). This proves the
proposition.

1Since the semigroup e−tL is sub-Markovian, it acts on Lp(Rd) and hence the generator
of this semigroup in Lp(Rd) is well defined. This is the operator L we consider on Lp(Rd).
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Remark. In the proof we did not use the boundedness of the function GL

but only its gradient part, i.e. boundedness on Lp(Rd) of the Littlewood-
Paley-Stein function:

G(f)(x) =
(∫ ∞

0
t|∇e−t

√
Lf(x)|2dt

)1/2
. (10)

In the next result we shall need the assumption that there exists ϕ ∈
L∞(Rd), ϕ > 0 such that

Lϕ = 0. (11)

The meaning of (11) is e−tLϕ = ϕ for all t ≥ 0.
Note that (11) is satisfied for a wide class of potentials. This is the case for
example if V ∈ Ld/2−ε(Rd) ∩ Ld/2+ε(Rd) for some ε > 0, see [9]. See also
[11] for more results in this direction.

Theorem 3.2. Suppose that there exists 0 < ϕ ∈ L∞(Rd) which satisfies
(11). Then GL (or HL) is bounded on Lp(Rd) for some p > d if and only if
V = 0

Proof. If V = 0 then L = −∆ and it is known that the Littlewood-Paley-
Stein function GL (and also HL) is bounded on Lp(Rd) for all p ∈ (1, ∞).
Suppose now that V is as in the theorem and GL is bounded on Lp(Rd) for
some p > d.
Let kt(x, y) be the heat kernel of L, i.e.,

e−tLf(x) =
∫

Rd
kt(x, y)f(y)dy

for all f ∈ L2(Rd). As mentioned in the introduction, due to the positivity
of V ,

kt(x, y) ≤ 1
(4πt)d/2 e− |x−y|2

4t . (12)

On the other hand, using the Sobolev inequality (for p > d)

|f(x) − f(x′)| ≤ C|x − x′|1− d
p ‖∇f‖p

we have
|kt(x, y) − kt(x′, y)| ≤ C|x − x′|1− d

p ‖∇kt(., y)‖p.

Using (12), Proposition 3.1 and the fact that

kt(x, y) = e− t
2 Lk t

2
(., y)(x),

we have
|kt(x, y) − kt(x′, y)| ≤ C|x − x′|1− d

p t− 1
2 t

− d
2 (1− 1

p
)
. (13)

7

The inequality here holds for f in the domain of L, seen as an operator
on Lp(Rd).1 In order to do this we follow some arguments from [5]. Set
Pt := e−t

√
L and fix f ∈ L2(Rd). By integration by parts,

‖∇Ptf‖2
2 = (−∆Ptf, Ptf) ≤ (LPtf, Ptf) = ‖L1/2Ptf‖2

2.

In particular,
‖∇Ptf‖2 ≤ C

t
‖f‖2 → 0 as t → +∞.

The same arguments show that t‖∇L1/2Ptf‖2 → 0 as t → +∞. Therefore,

|∇f |2 = −
∫ ∞

0

d

dt
|∇Ptf |2dt

= −
[
t

d

dt
|∇Ptf |2

]∞

0
+

∫ ∞

0

d2

dt2 |∇Ptf |2t dt

≤
∫ ∞

0

d2

dt2 |∇Ptf |2t dt

= 2
∫ ∞

0
(|∇L1/2Ptf |2 + ∇LPtf.∇Ptf)t dt

=: I1 + I2.

Using the fact that GL is bounded on Lp(Rd) it follows that

‖I1‖p/2 ≤ ‖GL(L1/2f)‖2
p ≤ C‖L1/2f‖2

p. (8)

By the Cauchy-Schwartz inequality,

|I2| ≤
(∫ ∞

0
(|∇LPtf |2tdt

)1/2 (∫ ∞

0
(|∇Ptf |2tdt

)1/2

≤ GL(Lf)GL(f).

Integrating gives

‖I2‖p/2
p/2 ≤

(∫

Rd
|GL(Lf)|p

)1/2 (∫

Rd
|GL(f)|p

)1/2
≤ C‖Lf‖p/2

p ‖f‖p/2
p . (9)

Combining (8) and (9) gives (7) for f ∈ D(L)∩L2(Rd). In order to obtain (7)
for all f ∈ D(L) we take a sequence fn ∈ L2(Rd)∩Lp(Rd) which converges in
the Lp-norm to f . We apply (7) to e−tLfn (for t > 0) and then let n → +∞
and t → 0.

For f ∈ Lp(Rd) we apply (7) to e−tLf and we note that ‖L1/2e−tLf‖p ≤
C√

t
‖f‖p and ‖Le−tLf‖p ≤ C

t ‖f‖p. Both assertions here follow from the
analyticity of the semigroup on Lp(Rd) (see [12], Chap. 7). This proves the
proposition.

1Since the semigroup e−tL is sub-Markovian, it acts on Lp(Rd) and hence the generator
of this semigroup in Lp(Rd) is well defined. This is the operator L we consider on Lp(Rd).
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Thus, using again (12) we obtain

|kt(x, y) − kt(x′, y)| = |kt(x, y) − kt(x′, y)|1/2|kt(x, y) − kt(x′, y)|1/2

≤ C|x − x′|
1
2 − d

2p t
− d

2 + d
4p

− 1
4

(
e− |x−y|2

8t + e− |x′−y|2
8t

)
.

Hence, for x, x′ ∈ Rd

|ϕ(x) − ϕ(x′)| = |e−tLϕ(x) − e−tLϕ(x′)|

= |
∫

Rd
[kt(x, y) − kt(x′, y)]ϕ(y)dy

≤ ‖ϕ‖∞

∫

Rd
|kt(x, y) − kt(x′, y)|dy

≤ C|x − x′|
1
2 − d

2p t
d

4p
− 1

4 .

Letting t → ∞, the RHS converges to 0 since p > d. This implies that
ϕ = c > 0 is constant. The equality 0 = Lϕ = Lc = V c and hence
V = 0.

Remark. 1. The above proof is inspired from [7] in which it is proved that
the boundedness of the Riesz transform ∇L−1/2 on Lp(Rd) for some p > d
implies that V = 0.
2. According to a previous remark, we could replace in the last theorem the
boundedness of GL by the boundedness of G defined by (10).
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Abstract. Let d be a square-free integer, k = Q(
√
d, i) and i =

√
−1. Let k(2)

1 be the Hilbert
2-class field of k, k(2)

2 be the Hilbert 2-class field of k(2)
1 and G = Gal(k

(2)
2 /k) be the Galois group

of k(2)
2 /k. We give necessary and sufficient conditions to have G metacyclic in the case where

d = pq, with p and q are primes such that p ≡ 1 (mod 8) and q ≡ 7 (mod 8) and the 2-class
group of k is of type (2, 4), using the quartic residue symbols of certain fundamental units.

Key words: 2-class groups, Hilbert class fields, 2-metacyclic groups.

1. Introduction
Let k be an algebraic number field and l be a prime; then lk will denote a prime ideal of k above l.

We denote, also, by
(
x

lk

)
the quadratic residue symbol for the prime lk applied to x. If k contains

i =
√
−1 and lk is prime to 2, then we can define

(
x

lk

)

4

by :

(
x

lk

)

4

≡ x
N(lk)−1

4 (mod lk).

Where N(lk) is the absolute norm of lk. Let Cl2(k) denote the 2-class group of k, k(1)
2 its Hilbert

2-class field and k
(2)
2 its second Hilbert 2-class field that is the Hilbert 2-class field of k(1)

2 . Put G =

Gal(k
(2)
2 /k) and G′ its derived group, then it is well known that G/G′ � Cl2(k). An important

problem in Number Theory is to characterize the structure of G using the residue symbols, since
the knowledge of G, its structure and its generators solve a lot of problems in number theory such
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as capitulation problems, whether class field towers are finite or not and the structures of the 2-
class groups of the unramified extensions of k within k

(1)
2 . In this paper, we give an example of

this situation.
Let k = Q(

√
pq, i), where p ≡ 1 (mod 4) and q ≡ 3 (mod 4) are two different primes such

that
(
q

p

)
= 1, then the symbols

(
εq
p

)
:=

(
εq

pQ(
√
q)

)
and

(
ε2q
p

)
:=

(
ε2q

pQ(
√
2q)

)
do not depend

on the choice of pQ(
√
q) and pQ(

√
2q) (εm is the fundamental unit of Q(

√
m), where m = q or 2q).

According to [1], 2εm is a square in Q(
√
m) whenever m = q or 2q, so

(
εm
p

)
=

(
2

p

)
. If p ≡ 1

(mod 8), then we can define the following quartic residue symbol:
(
εm
p

)

4

:=

(
εm

pQ(
√
m,i)

)

4

(see.

[8]). In the present paper, we give explicit expressions of this symbol for m = q and we show
that if the 2-class group of k is of type (2, 4), then it takes the value −1 and we also show that the
metacyclicity of G is characterized by the value of this symbol for m = 2q ≡ 14 (mod 16).

Let m be a square-free integer and k be a number field. Throughout this paper, we adopt the
following notations:

• h(m), (resp. h(k)): the 2-class number of Q(
√
m), (resp. k).

• εm: the fundamental unit of Q(
√
m), if m > 0.

• Ek: the unit group of Ok.

• Wk: the group of roots of unity contained in k.

• ωk: the order of Wk.

• i =
√
−1.

• k+: the maximal real subfield of k, if k is a CM-field.

• Qk = [Ek : WkEk+ ] is the Hasse unit index, if k is a CM-field.

• Cl2(k): the 2-class group of k.

2. The quartic residue symbol of εm and applications

In what follows, we adopt the following notations: if p ≡ 1 (mod 8) is a prime, then
(

2
p

)
4

will

denote the rational biquadratic symbol which is equal to 1 or −1, according as 2
p−1
4 ≡ 1 or − 1

(mod p). Moreover the symbol
(
p
2

)
4

is equal to (−1)
p−1
8 . A 2-group H is said to be of type

(2n1 , 2n1 , ..., 2ns) if it is isomorphic to Z/2n1 ×Z/2n2 × ...Z/2ns , where ni ∈ N. Finally, r denotes
the rank of the 2-class group of Q(

√
q,
√
p, i).
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Theorem 1. Let p = u2 ∓ 2εv2 ≡ 1 (mod 8), q = w2 − 2εz2 ≡ 3 (mod 4) be primes such that

ε =

(
2

q

)
and

(
q

p

)
= 1. If εq is the fundamental unit of Q(

√
q), then

(
εq
p

)

4

=

(
2

p

)

4

(
uz ± vw

p

)
.

Proof. As p ≡ 1 (mod 8) and q ≡ 3 (mod 4), then



(
2ε

p

)
=

(
±2

p

)
= 1;

(
2ε

q

)
=

(
ε

q

)(
2

q

)
= εε = 1.

This means that p and q split in the ring of integers of Q(
√
2ε), so there exist four positive integers

u, z, v and w such that
p = u2 ∓ 2εv2 et q = w2 − 2εz2.

Let εq = x+ y
√
q be the fundamental unite of Q(

√
q). Since q ≡ 3 (mod 4), so 2εq is a square in

Q(
√
q) (see [1]). In this situation, we have that

{
x+ ε = y21 ,
x− ε = qy22 , and

√
2ε2 = y1 + y2

√
q

where y = y1y2, then 2ε = y21 − qy22 and (y1 −
√
2ε)(y1 +

√
2ε) = qy22. Let q = µµ be the

decomposition of q in Q(
√
2ε). As y1−

√
2ε is the conjugate of y1+

√
2ε in Q(

√
2ε), so we obtain

the following decomposition: {
y1 ±

√
2ε = µα2,

y1 ∓
√
2ε = µα2,

where α is the conjugate of α and y2 = αα, which implies that 2y1 = µα2 + µα2. Using this
equality we can check that

2µ
√
2ε2 = (µα + α

√
q)2.

Then
(√

2εq

pQ(
√
q)

)
=

( √
2εq

pQ(
√
q,
√
2ε)

)
=

(
2µ

pQ(
√
q,
√
2ε)

)

=

(
2

pQ(
√
q,
√
2ε)

)(
w ±

√
2εz

pQ(
√
q,
√
2ε)

)

=

(
2

p

)(
w ±

√
2εz

pQ(
√
2ε)

)
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Corollary 2. Let k = Q(
√
pq, i), where p ≡ 1 (mod 8) and q ≡ 3 (mod 4), and r be the rank of
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;
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.

Proof. In [3], we have shown that, if q ≡ 3 (mod 4), then, by putting η =

(√
2εq

pQ(
√
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if
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we obtain

r =
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=
(p
2
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Since the 2-class group of k is of type (2, 4), then
(
p

q

)
= 1 and η = −1 (see the previous

corollary).

Lemma 1 ([6]). Let k = Q(
√
pq, i), where p ≡ 1 (mod 1) and q ≡ 3 (mod 4). If

(
q

p

)
= 1,

then there exist an unramified cyclic extension of degree 4 containing k∗ = Q(
√
p,
√
q, i) the genus

field of k.

Theorem 2. Let k = Q(
√
pq, i), where p ≡ 1 (mod 8) q ≡ 7 (mod 8), and put G = Gal(k

(2)
2 /k).

Assume the 2-class group of k is of type (2, 4), then the group G is metacyclic if and only if(
ε2q
p

)

4

= −1.

Proof. As the 2-class group of k is of type (2, 4), then the extension k
(1)
2 /k admits three abelian

subextensions of degree 2 say Ki,2 and three abelian subextensions of degree 4 say Ki,4 where
i ∈ {1, 2, 3}. The following figure illustrates the situation.

k
(2)
2��

k
(1)
2�� �� ��

K1,4 ��
K3,4�� �� ��

K2,4��

K1,2 ��
K3,2��

K2,2��

k

Thus [4, Theorem 14, p. 107] yields that G is metacyclic if and only if the rank of the 2-class
group of K3,2 is equal to 2, this in turn is equivalent, by Corollary 2 and previous Lemma, to
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This completes the proof of the theorem.
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Abstract. Robotics is an interdisciplinary research field leveraging on control theory, mechanical
engineering, electronic engineering and computer science. It aims at designing machines able to
perceive, move around and interact with their environment in order to perform useful tasks. Artifi-
cial Intelligence (AI) is an area of computer science, overlapping with but significantly distinct from
robotics. Its purpose is to understand intelligence, through effective computational models, design
and experiment with systems which implement these models .

There is a significant convergence between Robotics and AI. Their intersection, qualified here
as Machine Intelligence, is critical for both areas. Robots implement the so-called “perception -
decision - action” loop; the intelligence or decision making part is central in that loop for tackling
more variable and complex environments and tasks. On the other hand, AI is moving from abstract
intelligence, such as in playing chess, to addressing embodied intelligence.

This paper introduces the reader to some of the research issues and approaches in Machine In-
telligence. It surveys the state of the art in key issues such as planning and acting deliberately on
the basis of tasks and world models, learning these models, and organizing the sensory-motor and
cognitive functions of a robot into resilient and scalable architectures.

Key words: Robotics, Artificial Intelligence.
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1 Introduction

Robotics and Artificial Intelligence are two overlapping but quite distinct research fields. Machine
Intelligence refers to their intersection. This paper surveys the state of the art at this intersection. Its
purpose is to introduce the reader to the synergies between Robotics and Artificial Intelligence and to
demonstrate that Machine Intelligence is a very rich and fruitful in scientific problems.

Robotics aims at designing machines which are able to perceive, move around and interact with
their environment in order to perform some specified useful tasks. It is an interdisciplinary research
field, which covers several disciplines, primarily control theory, mechanical engineering, electronic
engineering and computer science. Its recent links with life sciences or materials sciences have opened
new and exciting perspectives. It entertains growing synergies with neuroscience for the development
of cognitive models and functions (e.g., Wolpert and Flanagan [129, 128], Wolpert and Ghahramani
[130]). Robotics, as an enabling technology, provides a significant technical and conceptual support
for the development of several other research fields such as medicine (e.g., surgery, biomechanics), or
environment and space sciences (e.g., oceanography or planetology). It addresses a wide spectrum of
applications.

Artificial Intelligence (AI) is a research area of computer science, mostly independent from
robotics. Its purpose is to understand intelligence through effective computational models, design
systems which implement them, and experiment with these systems in order to scientifically evaluate
and qualify the proposed models of intelligence. AI entertains interdisciplinary links with mathemat-
ical logics, psychology, neuroscience, linguistics, philosophy and other cognitive sciences. It already
brought a wealth of mature technologies, such as machine learning techniques, that are now seam-
lessly integrated in many computerized devices such as smartphones, cameras, web browsers, search
engines and semantic web applications.

Robotics is quite often referred to in AI research. It is a natural reference for work on embodied
intelligence and for experimental validation. The early beginnings of AI are rich in pioneering projects
of autonomous robots, such as Shakey at SRI of Rosen and Nilsson [101] or the Stanford Cart in the
late 60s, and a few years later, Hilare at LAAS of Giralt et al. [56] or the CMU Rover of Moravec [90].
These, and many other projects since that early period, clearly lie at the intersection of Robotics and
AI, seeking to understand, model and design machines that combine autonomous perception, decision
and action.

AI has been less frequently referred to in robotics publications. This is due to the breadth of the
robotics field. This is also due to the early challenges on which the robotics community has focused.
Early robots had reduced autonomy and limited sensing, locomotion and manipulation capabilities.
This naturally set the initial challenges more about sensory-motor functions than about deliberation

2

and cognitive functions. Significant progress during the last two decades on the sensory-motor level
has, fortunately, put robotics deliberation problems on the limelight.

We are now witnessing a growing convergence between Robotics and AI. Their inter-
section in Machine Intelligence is critical for both areas. Robots have been defined as a
“perception - decision - action” control loop. The decision part is central in that loop. On the other
hand, AI is moving from abstract intelligence, such as playing chess, to addressing embodied intelli-
gence. The intersection of Robotics and AI covers in particular the following issues:
• Perception, semantic interpretation of sensory data, environment modeling;

• Acting deliberately: planning and achieving autonomously complex tasks, including navigation in
open unknown environments;

• Learning to perceive, to act and behave with improved performance;

• Organizing sensory-motor and deliberation functions in a robot.

For the sake of a focused survey, the first item is not covered in this paper, to the exception of
a brief mention of some aspects of perception that are specific to robotics. The survey is primarily
devoted to the last three items, addressed successively in:
• Sections 3, 4 and 5, which are devoted respectively to motion planning and execution, tasks plan-

ning and acting, and interaction with humans or robots;

• Section 6 on learning; and

• and Section 7 on organization and architecture issues.
For a good understanding of the problems discussed here, the paper starts with a general intro-

duction to robotics and its applications (Section 2). It concludes with a short perspective on future
research. In each section we have chosen to illustrate with enough technical details some basic tech-
niques, and to refer the reader to the relevant publications for further deepening. A wide coverage of
robotics can be found in the handbook of Siciliano and Khatib [105]. A similar coverage for AI is
given in the textbook of Russell and Norvig [102].

(a) Baxter, a robot manipulator for
manufacturing (Rethink Robotics)

(b) Autonomous vehicles for logistics
applications (Kiva Systems)

Figure 1: Robots (a) for a fixed environment, and (b) for a single task.
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2 Overview of the Field

A robot can be defined as a machine able to perform a set of tasks in a class of environments with
some degree of autonomy and robustness. As for any natural being, the autonomous capabilities of a
robot are relative to the diversity of the tasks and environments it can cope with. A robot integrates
several components - actuators, sensors, computers, radio transmitters - which ensure in particular the
following functions:

• motion, with wheels, legs, wings, propellers, caterpillars, fins;

• manipulation, with mechanical arms, clamps, hand, cups, specialized tools;

• perception by proprioceptive sensors which estimate the internal state of the machine: odometer
and angular encoders, inclinometer, magnetometer, accelerometer, inertial measurement unit, GPS,
and exteroceptive sensors, which estimate the environment: camera, laser, radar, spectrometer, IR
or ultrasound range finder;

• communication, and

• decision making.

There are several classes of generic robotics applications corresponding to different classes of
environments and tasks. Each such a class emphasizes specific problems depending on the level of
autonomy desired for a robot. Well known examples are the following:

• Manufacturing robots: robot arms with adapted sensors at fixed positions for tasks such as painting,
welding, assembly, loading and unloading a press or machine tools [59];

• Exploration robots: mobile robots in outdoor environments [40] performing terrain mapping, soil
analysis, mining [33], intervention in a contaminated site, deployment of equipments at the bottom
of the ocean [6], in Antartica or on Mars [131];

• Service robots: mobile robots in indoor environments for cleaning, surveillance, transportation in a
shop, a workshop, a clean room or an hospital [55];

• Personal robots: mobile robots assisting people in professional environments or at home [98];

• Medical robots: robots specialized in assisting surgeons, in particular in “noninvasive
surgery” [119];

• Robot carried by human: exoskeleton allowing the extension of the sensory-motor skills of their
carrier [74].

This list is not exhaustive. Other classes of robotics applications, such as agriculture, ecology,
construction, demining or military operations give rise to active research. Specific environments in
one of the above application classes, e.g., aerial exploration robotics, lead to particular problems.
Finally, cooperation and interaction when the tasks are carried out by several robots or by human -
robot teams bring additional challenges.

A key notion in robotics is the diversity of environments and tasks a robot must face. The tech-
nology is relatively mature when there is no diversity, that is for robots specialized in a single envi-
ronment, well modeled and instrumented, and on just one well specified task. If one considers man-
ufacturing robots, millions robot arms are operating in the industry (Figure 1(a)). In service robotics,
numerous autonomous ground vehicles are used in warehouses for logistic services [58] (Figure 1(b)
and in the electronic or pharmaceutical industry. In both cases, the well-modeled stable environment
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(a) Mars Rover Curiosity (NASA/ JPL) (b) Surgical robotics assistance (DaVinci
Intuitive Surgical)

Figure 2: Tele-operated robots.

of the robot is the result of a significant engineering effort. The same remark applies to single-task
robots, e.g., vacuum cleaner (more than 5 million sold) or lawn mower, which are a large commercial
success.

When the environment or tasks are highly variable, the degree of autonomy of the robot becomes
an important factor. We may distinguish three levels:
• no autonomy: the robot applies to its actuators pre-recorded or operator specified commands;

• tasks autonomy: the robot performs tasks precisely defined by the operator, e.g., goto point A then
pick-up object O;

• autonomy to achieve missions specified in abstract terms, e.g., find and rescue injured persons in
the area.

When there is no need for autonomy, many robotics technologies are already mature. This is due
in particular to the highly simplified perception and deliberation problems. Robots tele-operated at
the task level have been demonstrated in impressive experiments, e.g., in the exploration of planets
(Figure 2(a)). They are also used in successful applications, e.g., robotics surgery systems have been
deployed at several thousands sites, despite their high cost and complexity (Figure 2(b)). Remote
manipulation has to address other technical challenges, such as how to provide good sensory feedback
to a human operator to enable her to properly understand the state of the environment and the task,
or how to reliably translate human commands to the robot actuators (e.g., to filter the signal from the
movements of the surgeon’s hand to obtain a precise and safe trajectory of the scalpel and to control
its motion with respect to the movement of the operated organ).

Limited autonomy simplifies perception and deliberation but it also constrains the tasks that can
be performed by a tele-operated robot. Thus, Mars rovers of the previous generation, Spirit and Op-
portunity, were tele-operated at the motor control level. The communication delay (up to 40 minutes
depending on the Mars-Earth configuration) limited their remote operation to a few meters per day.
At a later stage of their mission, the introduction of autonomous motion has allowed these robots to
traverse up to 140 meters per day. Today, Curiosity can perform up to 1.5 Km per day of autonomous
navigation, but it is still tele-operated at the task level for its other activities. In some application,
autonomy is not desired: the human operator wants to remain in full control of every command. How-
ever, it can be preferable to tele-operate a robot at the task level, e.g., tell it to make a precise line
of surgical sutures, or to close an underwater valve, leaving it up to the robot to translate the task
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(a) NASA/JPL (b) INTRA Group

Figure 3: Robots for hazardous environments.

into controlled commands, under the supervision of the operator. Here also, the state of the art has
reached some maturity, illustrated for example by robots used in hazardous environments (Figure 3).
Another illustration of the autonomy at the task level can be given by telepresence robots. These are
mobile platforms carrying away the image and voice of the user, giving a visual and audible feedback,
capable of simple tasks, e.g., find a person, asking her to lend an object and bringing it back to the
robot’s user (Figure 4).

One may try to use these and similar platforms to achieve more autonomous and varied missions.
But the state of the art faces many open problems, in particular for the interpretation of the environ-
ment, for planning and acting with incomplete and uncertain models and noisy sensory data.

(a) Double
Robotics

(b) PadBot

Figure 4: Telepresence robots

Autonomy at the mission level already achieves good experimental success when the tasks are well
structured and constrained, even when the environment is highly variable. Driverless cars provide a
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good illustration. The first success goes back to the 2005 “DARPA Grand Challenge”: autonomous
traversal of 320 km in the Mojave Desert in less than 7 hours (Figure 5(a) [123]), which was followed
in 2006 by the “DARPA Urban Challenge”. Since then, several companies reported millions of kilo-
meters of autonomous driving on roads and highways (Figure 5(b)). Autonomous underwater vehicles
(AUV) are another excellent example. Experimental AUVs are launched for up to 24 hours in a mis-
sion of mapping, water sampling, oceanographic and biological measurement; in case of a problem,
the AUV surfaces and indicates its position to be retrieved by its operators (Figure 5(c) [84]).

(a) Stanley, DARPA challenge
2005 (Stanford U.)

(b) Autonomous Driving
(Google)

(c) Dorado, AUV (MBARI)

Figure 5: Autonomous vehicles.

Robotics research relies significantly on experiments. The advance of the field has been condi-
tioned by the availability of inexpensive reliable platforms with broad functionalities that are easily
deployable and programmable. Significant progress has been witnessed in the last decade. A good
illustration is provided by humanoid robots: many research groups have now access to biped robotic
platforms of human size (Figure 6(a) and 6(b)). These robots demonstrate good motor skills as well
as impressive mechatronics. Platforms on wheels with two arms, sometimes with an articulated trunk,
also illustrate rich sensory-motor capabilities. These platforms are able for example to catch simulta-
neously two thrown balls (Figure 7(a)), to fold laundry or to play billiards (Figure 7(b)).

Several research competitions stimulated the progress of the field. In addition to autonomous
driverless cars, there are several other competitions, e.g., in robotics assembly, aerial robotics or hu-
manoid robotics. The robotics soccer competition “RoboCup” is very popular. One can be critical for
the oversimplifications often introduced in these competitions (artificial or “micro-worlds” problems).
However, their effects in terms of attractiveness, visibility and team commitment, especially among
students, remain largely beneficial to the progress of robotics.

3 Motion Planning, Mapping and Navigation

Mobility is a critical and widely studied function for autonomous robots [78, 30, 80]. When the
environment is well modeled, the movements of a robot can be planned and controlled in a robust
manner. Otherwise, the robot has to explore its environment to acquire the needed geometrical and
topological models. Let us discuss here these two problems of motion planning and environment
modeling.
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(a) HRP 4 (Kawada
Industry)

(b) Atlas (Boston Dynamics)

Figure 6: Humanoid robots.

3.1 Motion planning with probabilistic road maps

We assume that the environment is described by a geometric model (such as a Computer-Aided Design
model), which specifies the geometry of the obstacles and the free space. The robot is modeled by its
kinematics, i.e., the set of degrees of freedom and the constraints of its moving limbs, as well as its
dynamics, i.e., masses and inertia of its components, and the forces and torques of its actuators.

Motion planning consist in finding a trajectory for connecting an initial position to a goal position.
This trajectory should be feasible in space and time. The problem is usually decomposed into two
steps: (i) find a feasible path that satisfies the kinematics constraints of the robot and the geometric
constraints of the environment, and (ii) find a control law along that path that satisfies the dynamic
constraints of the robot. In simple cases these two problems (i) and (ii) can be solved independently.
When there are no moving obstacles and the robot dynamic constraints are weak (e.g., slow motion),
it is generally easy to map a feasible path into a feasible trajectory with simple control laws. Motion
planning in robotics reduces mainly to a path planning problem, which we detail below.

A free rigid object in Euclidean space without kinematic constraint is characterized by six config-
uration parameters: (x, y, z) for the position of a reference point and three angles for the orientation
of the solid in space. But a robot has kinematic constraints that restrict its movements. For example,
a car in the plan has three configuration parameters (x, y and orientation θ), which generally are not
independent (a car cannot move laterally). The PR-2 robot (Figure 7(b)) has 20 configuration param-
eters (3 for the base, one for the trunk, 2 for the head, and 7 per arm). The humanoid robot HRP-4
(Figure 6(a)) has 32 configuration parameters plus five for each hand.

For a robot with n configuration parameters in a given environment let us define:
• q ∈ �n, the configuration of the robot, a vector of n real values that specifies the n parameters

characterizing the position of the robot in a reference frame;
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(a) Justin (DLR) (b) PR2 at LAAS (Willow Garage)

Figure 7: Mobile robots with two arms.

• C, the configuration space of the robot, which describes all possible values of q in �n given the
kinematic constraints, such as the max and min angular positions that each joint can have, and the
dependencies between configuration parameters;

• Cf ⊆ C, the free configuration space which gives all possible values of q ∈ C given the constraints
of the environment, i.e., the set of configurations for which the robot does not collide with obstacles.

These concepts are illustrated in Figure 8 for a robot with two degrees of freedom.1

Planning a motion between an origin configuration qo and a goal configuration qg, both in Cf ,
consists in finding a path between qo and qg in this n dimensional continuous space. The major dif-
ficulty here, as for any other planning problem, is that the search space Cf is not known explicitly.
The explicit definition of Cf from the geometric model of the environment and the kinematic con-
straints of robot is an extremely complex problem, difficult to solve even for very simple robots and
environments. In the trivial 2D case of the previous example, this problem corresponds to finding the
analytical definition of the grey area in Figure 8(b). Significant research in computational geometry
addressed this representation problem, see e.g., Schwartz et al. [104]. It opened the way to sampling-
base approaches that helped to circumvent the problem, in particular with the following method.

The Probabilistic Roadmap algorithm of Kavraki et al. [73] relies on two easily computable
operations:
• kinematic guidance: find a direct kinematic path L(q, q′) between two configurations q and q′ ∈ C

without worrying about environment constraints, i.e., L(q, q′) satisfies the kinematic constraints

1Figure adapted from http://www.cs.cmu.edu/motionplanning/
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116-735,  Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha
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16-735,  Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha
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Figure 8: (a) A planar robot with two angular joints, α and β facing a circular obstacle. (b) Corre-
sponding configuration space: the projection of the obstacle in C shows that the two configuration qA
and qB are not connected : no motion of the robot can move it from points A to B.

but not necessarily the constraints of non-collision with obstacles. The techniques used for that are
specific to the type of the robot kinematic constraints, e.g. composition of straight lines and curves;

• collision test: check whether a configuration q does or does not collide with obstacles, i.e., if
q ∈ Cf ; check whether a path L(q, q′) between two configurations is collision-free, i.e., if it passes
entirely in Cf . This relies on basic techniques of computational geometry.

A roadmap G in Cf is a graph whose vertices are configurations in Cf ; two vertices q and q′ are
adjacent in G iff there exists a path without collision L(q, q′) in Cf .

If a roadmap G in Cf is known, then planning a path between an origin configuration qo and a goal
configuration qg can be solved with the three following steps:
• find a vertex q in G such that q is accessible from qo i.e., L(qo, q) ∈ Cf ;

• find a vertex q′ in G such that qg is accessible from q′, i.e., L(q′, qg) ∈ Cf ;

• find a sequence of adjacent vertices in G between q and q′.
Path planning is then reduced to a simpler problem of finding a path in graph. If such a sequence

of configurations is found, efficient algorithms allow to smooth and optimize locally this sequence of
configurations in G into a kinematic path. It remains therefore to find a map G covering adequately
Cf , i.e., if there is a path in Cf then there is also a path in the roadmap G using the previous three steps.

The algorithm in Figure 9 [108] provides a graph G which probabilistically satisfies this coverage
property. This algorithm incrementally generates G starting with an empty roadmap. It adds to the
map under construction a randomly drawn configuration q in the following two cases:
• if q belongs to the free space and extends the coverage of G, allowing to reach parts of Cf not yet

covered (step �(i)), or

• if q belongs to the free space and extends the connectivity of G, allowing to connect two components
not currently connected in the roadmap (step �(ii)).
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Probabilistic Roadmap (G)
iterate until Termination

sample a random configuration q ∈ C
if q ∈ Cf then do

if ∀q′ ∈ G: L(q, q′) /∈ Cf then add q in G � (i)
else if ∃q1, q2 in G such that q1 and q2 are not connected

and L(q, q1) ⊂ Cf and L(q, q2) ⊂ Cf
then add q and the edges (q, q1) and (q, q2) to G � (ii)

Return(G)

Figure 9: Probabilistic roadmap algorithm for path planning

The Termination condition is based on the number of consecutive samples of unsuccessful ran-
dom free configurations that do not add anything to the map. If kmax is such a number, then the
probability that the resulting graph covers Cf is estimated by (1−1/kmax). In practice, this algorithm
is very efficient. The probabilistic roadmap technique and its incremental variants (called RRT for “
Rapidly exploring Random Trees” [80]) are now widely used in robotics. They are also used in other
application areas such as mechanical design, video animation, or computational biology for molecular
docking problems to find whether a ligand can bind to a protein. They have been extended to take into
account dynamic environments.

These techniques have advanced significantly the state of the art but they do not solve all motion
planning problems in robotics. Many open problems remain, in particular for handling the robot
dynamics. Further, one needs to synthesize plans that are robust to the uncertainty of the models and
to the sensory-motor noise in the robot localization and motion control. For example, we may want
a path that relies on known landmarks to maintain the localization uncertainty below an acceptable
threshold. In addition, we need to restate the problem for concrete tasks. The previous formulation
refers to a completely specified motion problem, i.e., from a configuration qo to a configuration qg.
In practice, the problem arises with respect to a task, e.g., grasp an object. This leads to several
open problems [107]. A grasp allows to infer the configuration of the end effector (hand and fingers)
from the position of the object to be grasped. But the configuration of the end effector gives only
a part of qg. It is possible to decompose the problem into: (i) plan the movement of the base of
the robot to a configuration “close” to the object, then (ii) plan a movement of the arm to a grasp
position. However, the manipulation of an object can require intermediate poses at different moment
with respect to the object, or the manipulation of other interfering objects. It is then necessary to
change the structure of the search space according to the grasps and poses of objects handled. In
addition, the above decomposition is not always feasible. For example, a humanoid robot requires a
coordinated movement of its body and all limbs [72] (Figure 10). Further, sensing and visibility issues
bring additional constraints, e.g., planning a motion that avoids occultation between a camera carried
by the robot’s head and its hand, to allow for visual servoing [28].

3.2 Simultaneous Localization and Mapping

The execution of a planned motion requires the control of the actuators for achieving a trajectory,
possibly with avoidance of unexpected obstacles. The synthesis of this control is done with models
and methods from control theory. Robotics raises very interesting problems in automatic control, e.g.,
in the control of non-holonomic systems. These issues are not within the scope of this paper. We refer
the reader for example to the book of LaValle [80] or the synthesis of Minguez et al. [87].
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Figure 10: Picking up a ball requires a coordinated whole body motion planning; here the synthesized
plan led the robot to step back, bend and extend opposite arm to maintain its balance (LAAS).

The execution of a planned motion requires also to maintain a good estimate of the state of the
robot throughout the execution of the command. In particular, the robot must always know where
it is in the environment. Sometimes, one may use absolute localisation, as given by a GPS or a
radio-positioning system if the environment provides the adequate infrastructure. However, to operate
autonomously in a diversity of environments, a robot must be able to locate itself directly from the
perceived natural elements of its environment and a map of this environment. Further, this map
is generally partially known, or even unknown. In general a robot is faced with a problem called
simultaneous localization and mapping (SLAM). This problem has been identified quite early [27,
113], and has been since a very active research topic in robotics.2

To define the problem, let us discuss its two subproblems:
• Localization: the robot is localized in a fully known environment, modeled by k landmarks that are

easily recognizable and perfectly positioned in space (2D or 3D). At time t, the robot is in a posi-
tion estimated by x̃t. It moves with the command ut (giving the movement speed and orientation
between t and t′). This allows to estimate the new position x̃′. The robot observes k landmarks
where it expects to find them (from the estimated x̃′). It updates its position in relation to each
recognized landmark. The observed positions of the landmarks are combined into a new estimated
position of the robot x̃t+1. The process is repeated at each time step as long as the robot remains
within a fully known environment. The intermediate estimate x̃′ serves only to find landmarks. The
localization error takes into account the sensing errors in the landmark observed positions, but it
does not increase with time as long as the landmark locations in the map are error free. The error
associated with the motor command ut does not affect the localization.

• Mapping: The robot builds a map of its environment assuming it knows precisely its successive
positions. The jth landmark is estimated at time t as x̃jt . The robot moves between t and t + 1
to a new known position, from which it observes again the position of the jth landmark as x̃′j

2See, e.g., the software repository: http://www.openslam.org/
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with sensing error. x̃′j and x̃jt are combined into a more reliable estimate x̃jt+1 . The map quality
improves with time.

A DCB(a)A DCB(b)A DCB (c)A DCB (d)

Figure 11: SLAM procedure for a simple 2D robot: (a) Three landmarks (corners of obstacles) are
detected and positioned with inaccuracy due to sensing noise. (b) The robot moves and estimates its
position with a motion error. (c) The landmarks are observed and associated with the corresponding
ones previously perceived. (d) Data fusion reduces the errors on the current position of the robot and
the positions of the landmarks. The process is iterated for each new robot motion and sensing.

In practice, the two problems have to be addressed simultaneously. The initial map, if there is one,
is never error free. Errors in the map entail localization errors. Symmetrically, the robot localization is
noisy, which entails errors in its updates of the map. However, the two sources of error, from sensing
and motion, are not correlated (see Figure 11). It is possible to combine the two subproblems into the
simultaneous estimate of the positions of the robot and the landmarks.

One approach initially explored for solving the SLAM relies on extended Kalman filters. The
technical details may seem complicated but a step by step presentation shows that the principle is
simple. It is assumed that the environment is static and the sensors of the robot are properly calibrated
and do not introduce systematic bias. Sensing errors are modeled as a Gaussian noise with zero
mean and a standard deviation specific to each sensor. Let us assume two sensors, characterized
respectively by σ1 and σ2, which both measure the distance to the same landmark. They return two
values µ1 and µ2. We can estimate the true distance by averaging the returned values while giving
more confidence to the most accurate sensor, i.e., the one with the smaller σi. Hence µi is weighted by
1/σi. The estimated distance µ is associated with a standard deviation σ defined below (Equation 1).
This estimates has good properties: it minimizes the mean squared error. The error resulting from the
combination of the two measures decreases, since σ <min{σ1, σ2}.

µ = α(µ1/σ1 + µ2/σ2), with α = σ1σ2/(σ1 + σ2)

1/σ = 1/σ1 + 1/σ2
(1)

This process is applied incrementally. We combine the current estimate (µ′, σ′) to the new mea-
sure (µz, σz). The new estimate at time t (µt, σt) integrating the new measure is given by the same
equation, rearranged easily into the following form (Equation 2):

µt = µ′ +K(µz − µ′)

σt = σ′ −Kσ′

K = σ′/(σz + σ′)

(2)
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equation, rearranged easily into the following form (Equation 2):

µt = µ′ +K(µz − µ′)

σt = σ′ −Kσ′

K = σ′/(σz + σ′)

(2)
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Let us now introduce the robot’s motion. At time t− 1 the robot was in a position with respect to
the landmark of interest estimated by (µt−1, σt−1). Between t− 1 and t the robot moves according to
a command known with an uncertainty similarly modeled. Let (ut, σu) be the estimate of this motion
along the robot - landmark line. This estimate is given by the command sent to actuators and/or by
the odometer. The relative distance to the landmark after the motion is estimated by (µ′, σ′), noting
that the error increases due to the motion:

µ′ = µt−1 + ut

σ′ = σt−1 + σu
(3)

We now can combine the two previous steps into a SLAM approach based on Kalman filtering.
The estimate of the relative position robot - landmark is updated between t− 1 and t in two steps:

(i) update due to motion (with Equation 3): (µt−1, σt−1) → (µ′, σ′)
(ii) update due to sensing (with Equation 2): (µ′, σ′) → (µt, σt)

In the general case, these updates are applied to vectors instead of simple scalar values. We run the
above process to the update of the positions of the robot and the landmarks in the Euclidean space, 2D
or 3D. The position of the robot does not necessarily include all its configuration parameters, but only
the portion of q necessary for the localization of a reference point and for the positioning of its sensors.
The map is characterized by many landmarks positioned in space. A vector µt, whose components
are the robot configuration parameters and the positions of the landmarks, is updated at each step.
The error is no longer a scalar σt but a covariance matrix Σ whose element σij is the covariance
components i and j of the parameters of µ. The error on the position of the robot is coupled to the
errors of the map and symmetrically. Furthermore, the above approach applies only to linear relations.
But the relationship between the command and the motion is not linear. We approximate a solution
to this problem by linearizing around small motions. This leads finally to the extended Kalman filter
formulation of SLAM:

µ′ = Aµt−1 +But

µt = µ′ +Kt(µz − Cµ′)

Σ′ = σt−1 +Σu

Σt = Σ′ −KtCΣ′

Kt = Σ′CT (CΣ′CT +Σz)
−1

(4)

Two update steps are easily identified:

(i) (µt−1, σt−1) → (µ′,Σ′) : vector ut, matrices A and B for the motion,
(ii) (µ′,Σ′) → (µt,Σt) : vector µz , matrix C for the new measurements.

One also takes into account the covariance associated with the motion and the measurements (Σu

and Σz). It should be noted that the first step uses the motion to update the position of the robot as
well as those of the landmarks. Similarly, the second step integrates the new measurements for both,
the localization and mapping.

This approach has been successfully implemented and frequently used [122]. It has many advan-
tages. In particular, it maintains the robot localization and the corresponding bounds on the error.
These bounds are very important in navigation: if the error grows beyond some threshold, specific
action has to be taken. The method converges asymptotically to the true map, with a residual error
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due to initial inaccuracies. Finally, the estimate is computed incrementally. In practice, the number
of landmarks increases dynamically. The robot maintains a list of landmark candidates which are
not integrated into the map (nor in the vector µ) until a sufficient number of observations of these
landmarks have been made. If n is the dimension of the vector µ (i.e., the number of landmarks), the
complexity of the update by Equation 4 is O(n2). The computations can be done online and on board
of the robot for n in the order of 103, which means a sparse map.

Particle filtering offers another approach to SLAM with additional advantages. Instead of estimat-
ing the Gaussian parameters (µ,Σ), the corresponding probability distributions are estimated through
random sampling. Let P (Xt|z1:t, u1:t) = N (µtΣt), where Xt is the state vector of the robot and
landmark positions at the time t, z1:t and u1:t are the sequences of measures and commands from 1 to
t. Similarly P (zt|Xt−1) = N (µzΣz).

Let us decompose the state vector Xt into two components related to the robot and the landmarks:
Xt = (rt, φ1, ..., φn)

T , where rt is the position of the robot at time t, and φ = (φ1, ..., φn)
T the

position of landmarks, which do not depend on time because the environment is assumed static.3 The
usual rules of joint probabilities entail the following:

P (Xt|z1:t, u1:t) = P (rt|z1:t, u1:t)P (φ1, . . . , φn|z1:t, u1:t, rt)

= P (rt|z1:t, u1:t)
∏
i=1,n

P (φi|z1:t, rt) (5)

The second line results from the fact that, given the position rt of the robot, the positions of the
landmarks do not depend on u and are conditionally independent. The robot does not known precisely
rt but it assumes that rt ∈ Rt = {r(1)t , . . . , r

(m)
t }, a set of m position hypotheses (or particles). Each

hypothesis r(j)t is associated with a weight w(j)
t . Rt and the corresponding weights are computed in

each transition from t− 1 to t by the following three steps:

• Propagation: for m′ positions in Rt−1 randomly sampled according to the weights w(j)
t−1, we com-

pute r
(j)
t the position at time t of the resulting control ut, with m′ > m,

• Weighting : the weight w(j)
t of particle r(j)t is computed taking into account the observation zt from

the product P (zt|φ, r(j)t )P (φ|z1:t−1, r
(j)
t−1).

• Sampling: the m most likely assumptions according to the new weights w(j)
t are kept in Rt.

For each of the m particles, the probability P (φi|z1:t, rt) is computed with a Kalman filter reduced
to the 2 or 3 parameters necessary to the position φi. With good data structures for the map, this
approach, called FastSLAM [88], reduces the complexity of each update to O(nlogm) instead of
O(n2) in the previous approach. In practice, one can keep a good accuracy for about m � 102

particles, allowing to maintain online a map with n � 105 landmarks.
The main limitation of these approaches is due to a well known and difficult problem of data

association. At each step of the incremental localization process, one must be sure not to confuse
the landmarks: associated measurements should be related to the same landmark. An update of the
map and the robot positions with measurements related to distinct landmarks can lead to important
errors, well beyond the sensory-motor errors. This argument, together with the computational com-
plexity issue, favors sparse maps with few discriminating and easily recognizable landmarks. On a
small motion between t − 1 and t, the landmarks in the sensory field of the robot are likely to be

3Note that in µt the estimate φ evolves with t, but not the position of the landmarks.
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recognized without association errors. But after a long journey, if the robot views some previously
seen landmarks, a robust implementation of the approach requires a good algorithm for solving the
data association problem.4 In the particle filtering approach, the probability distribution of Rt is very
different when the robot discovers a new place (equally likely distribution) from the case where it
retraces its steps. This fact is used by active mapping approaches, which make the robot retrace back
its steps as frequently as needed [114].
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Figure 12: Formulation of SLAM with a dynamic Bayesian network; arcs stand for conditional depen-
dencies between random variables, φ gives the positions of the landmarks (time-independent), ut, rt
and zt denote the command, the robot positions and the new measurements at time t.

In the general case, there is a need for an explicit data association step between the two stages
(i) and (ii) corresponding to Equation 4. This step leads to maintain multiple association hypotheses.
The SLAM approaches with Dynamic Bayesian Networks (DBN) for handling multi-hypotheses give
good results. The DBN formulation of SLAM is quite natural. It results in a dependency graph (Figure
12) and the following recursive equation:

P (Xt|z1:t, u1:t) = αP (zt|Xt)

∫
P (Xt|ut, Xt−1)P (Xt−1|z1:t−1, u1:t−1)dXt−1

= αP (zt|Xt)

∫
P (rt|ut, rt−1)P (Xt−1|z1:t−1, u1:t−1)drt−1

(6)

Here, α is a simple normalization factor. The vector state is as above Xt = (rt, φ1, ..., φn)
T ; the

second line results from the fact that the environment is assumed static and that the robot motion and
landmark positions are independent. The term P (zt|Xt) expresses the sensory model of the robot,
and the term P (rt|ut, rt−1) corresponds to its motion model. This formulation is solved by classical
DBN techniques, using in particular the Expectation-Maximization algorithm (EM), as for example
in Ghahramani [51], which provides a correct solution to the data association problem. However,
online incremental implementation of EM are quite complex. Let us also mention another version of
FastSLAM which takes this problem into account by an explicit optimization step over all possible
associations [89].

Recent approaches to SLAM favor this DBN formulation with a global parameter estimation prob-
lem overs the set of landmarks and robot positions. The problem is solved by robust optimization
methods. This general formulation is called the beam adjustment method, following the computational

4This is sometimes referred to as the SLAM loop problem.
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vision and photogrammetry techniques [125]. Visual SLAM has also benefited from recent image pro-
cessing features which are quite robust for localization and identification of landmarks [85, 93, 82].

Let us conclude this section by mentioning a few possible representations for the map of the
environment. Landmarks can be any set of sensory attributes that are recognizable and localizable in
space. They can be a simple collection of points. They can also be compound attributes, such as visual
segments, planes, surfaces, or more complex objects. The most appropriate attributes are generally
specific to the type of sensors used. The global map can be represented as a 2D occupancy grid.
Simple 3D maps for indoor environments, such as the Indoor Manhattan Representation, combine
vertical planes of walls between two horizontal planes for the floor and ceiling, [46]. They can be
used with more elaborate representations integrating semantic and topological information (see next
section).

3.3 Navigation

The previous approaches are limited to metric maps. They only take into account distances and
positions in a global absolute reference. When the environment is large, it is important to explicitly
represent its topology, possibly associated with semantic information. In this case, a map relies on
hierarchical hybrid representations, with metric sub-maps in local reference frames, together with
relationships and connectivity constraints between sub-maps. The robot re-locates itself precisely
when arriving in a sub-map.

Navigation in this case is also hybrid. Within a sub-map, motion planning techniques are used.
Between sub-maps other methods such as road following or beam heading are more relevant. Sensory
aspects and place recognition play an important role in navigation methods for semantic hierarchy of
spatial representations [76].

Mapping and map updates can be as flexible as in the case of SLAM through the updates of a
graph of local sub-maps [77, 38]. Topological planning relies on path search techniques in graphs
(using algorithms such as Dijsktra or A∗). It is associated with motion planning in sub-maps. Both
types of planning can be combined incrementally. Topological planning gives a route which is updated
and smoothed incrementally to optimize the motion giving the observed terrain while moving [75].

Topological planning in a graph or within a grid can be used with a partial knowledge of the
environment. Extensions of the A∗ algorithm (D∗ [115], D∗ Lite, or Focused D∗) compute shortest
paths in the graph, but they use the robot sensing to update the topology and costs parameters for
finding shortest paths.

Finally, a classical problem in any hybrid approach is that of the frontiers between levels and
their granularity. Labels of places (doors, rooms, corridors) and topology can emerge naturally from
sensing and/or from a uniform description of space into cells (grids, polygons or Delaunay triangles).
Decomposition techniques by quadtrees (a partially occupied cell is decomposed recursively) are
useful but can be computationally complex. Analysis of the levels of connectivity of a graph provides
elegant solutions with low complexity when the topological graph is planar [64, 79].

4 Task Planning and Acting

Task planning is the problem of synthesizing a plan, i.e., a sequence or a structured set of actions,
starting from the description of all possible actions that a robot can perform, and such that the synthe-
sized plan achieves an intended objective. Task planning is supposed to be general enough to handle
all kind of tasks, integrating mobility, manipulation, assembly, sensing, etc. A planner is a predictive
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system: it chooses, among various projections of possible futures those likely to lead to the goal. For
this, the models of possible actions are at some level of abstraction that allows easy predictions. They
are mainly logical or relational models, which grasp the causal relationships between actions, their
conditions, effects and the intended objectives. The plans produced are more like guidelines for acting
than direct programs to execute in open loop: they seldom fully unfold as expected, along a nominal
scenario. Once a plan is found, there are problems for acting according to that plan, i.e., transforming
the abstract actions in the plan into commands adapted to the context, monitoring their execution, and
if necessary, to taking corrective steps, including replanning.

Robotics was one of the first area that motivated the development of task planning. It led naturally
to the issue of coupling of planning and acting – the STRIPS planner of Fikes and Nilsson [43], on the
Shakey robot, associated with Planex [42] for the execution of plans, is a seminal work in this area.

The execution controller (controller for short) does not make prediction. It uses different types of
models which allow monitoring and, possibly, diagnosis. It must know which actions, especially the
sensory ones, are needed to launch a planned action and/or to observe the direct or indirect effects
of the action. It must be able to update the state of the world required to monitor the plan execution.
It must know the conditions which invalidate the current action, expressing the failure or absence of
response time, and those which invalidate the current plan. In addition, the controller must be able
to manage uncertainty and nondeterminism at various levels: the imprecision of sensory data and the
uncertainty about their interpretations; the action duration; the nondeterminism inherent to the action
outcomes, etc. Indeed, the controller launches the actions, but their effects and precise courses of
execution depend upon conditions and contingent events partially modeled. Finally, by definition, the
controller operates online: it must also be responsive to unforeseen events by the plan, and ensure
some safety conditions.

The coupling of planning and acting requires a tradeoff between the constraints and models needed
for the planner predictions and those needed for the acting online with action refinements, reactions,
monitoring and revision. A description of a planning and acting system and how to achieve this
tradeoff could be made on the basis of a hierarchical state transition system Σ = (S,A,E, γ), where
S,A and E are enumerable sets of state of activities and events, and γ is a function that describes the
dynamics of the system γ = S×A×E → S2. Activities are decided and triggered by the robot, while
events are not under its control; they give rise to changes in the environment which can be observed
directly or indirectly. Σ is described with two levels of abstraction:
• the planner has an abstract model of Σ: its macro-states are subsets of S, its actions are subsets of

activities; it rarely takes into account E;

• the controller has a finer model of Σ: it is able to refine each planned action in corresponding
activities which are under its control; it knows how to launch activities and how to monitor their
progress; it can trigger activities (e.g., monitoring, alarms) to observe the dynamics of S, and other
activities to react to events.

A complete formalization of such a system depends on many conditions, especially the type of plan-
ning used, deterministic or non-deterministic and the system dynamics, e.g., how to take into account
the concurrency between activities and events within the function γ. A presentation of possible ap-
proaches is beyond the scope of this paper. We refer the reader to the textbook of Ghallab et al. [54]
for a detailed coverage of tasks planning methods, and to the recent survey of Ingrand and Ghallab
[66] for a broad perspective on deliberate actions in robotics . In the remainder of this section, let
us review some of the main approaches for acting and execution control, focusing on relational and
logic representations in deterministic and temporal approaches, and on Markov representations for
nondeterministic approaches.
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4.1 Deterministic Approaches

The approaches using a classical planner (as in STRIPS) often produce a plan π to which they associate
a causal structure that help the controller follow the proper execution of the plan (e.g., triangular
tables). The purpose of these structures is to provide the conditions of use of the actions so that the
controller can verify their applicability and their proper execution. If these conditions are not met the
control can relaunch this action (or another) or it can call the planner to produce a new plan.

These causal structure to monitor the execution of a plan are quite limited. Richer formalisms
have been proposed to permit the execution of plans. They can be classified into two broad families.

Imperative Languages such as RAP [45], PRS [65], or TDL [109]. They offer an imperative pro-
gramming language that allows to specify procedures to be performed to meet some objectives
(e.g. perform an action). These languages offer conventional programming control structures
(test loop, recursion, parallelism, etc.), and often rely on concepts borrowed from logic pro-
gramming (as in Prolog).

State Transition Systems such as SMACH, the ROS controller language of ROS [18]. The user
provides a set of hierarchical finite state machines. Each state corresponds to an activity involv-
ing one or more components of the robot. According to the returned values of executions, the
controller performs the appropriate transition to the next state. The overall state of the system
corresponds to the composition of the hierarchical automata.

These systems, based on automatons or procedures are very useful and necessary in setting com-
plex robot experiments where one must coordinate many software components. However, these mod-
els, used to refine actions in activities, must be directly programmed by procedures or automatons
developers, and are not inferred from specifications. This is a problem with respect to their validation
and verification.

Planning with Hierarchical Task Network (HTN) [118, 37] naturally incorporates a refinement
process of abstract tasks in elementary actions. HTNs represent decomposition methods of task as
a network (often an and/or tree) of elementary actions. The specification of knowledge in these ap-
proaches appears natural to the programmer. These approaches seldom provide ways to refine planned
actions into commands, and to repair refinements when an execution failure occurs. However, several
HTN systems are used in robotics and extend the formalism in various ways. For example SIPE [126]
can produce plans where the duration of actions is taken into account. TCA/TDL [109] integrates
execution and decomposition during the execution of tasks in plans. Xfrm [13] can produce plans
following an HTN approach, but also allows the modification/repair of these plans while executing
them (transformational planing).

4.2 Timed Approaches

The controller of an autonomous robot must explicitly take into account time. A state transition
approach is not sufficient. Indeed, the activities of the robot are not instantaneous (motions, taking
images, etc). Often, they must be executed in parallel, synchronized, and bounded with earliest and
latest date. These motivations lead to explicitly include time and temporal constraints in the models:
the plan produced will be more robust with respect to execution.

Several planning approaches based on temporal intervals or events formalisms [5, 52] have been
developed, e.g., IxTeT [53] HSTS [92], Europa [48], APSI [49]. They led to extensions that take into
account execution. They produce plans in the form of a lattice of instants (the beginnings and ends of
actions) or intervals. A timeline represents the temporal evolution of a state variable (e.g., the position

19



134

An Overview of Problems and Approaches in Machine IntelligenceMalik Ghallab and Félix Ingrand

Frontiers in Science and Engineering - Vol. 6 - n° 1 - 2016
An International Journal Edited by The Hassan II Academy of Science and Technology

of the robot); it is composed of instants or intervals in which the variable keeps a value (e.g., the
robot does not move), or changes its value (the robot moves). The search for a solution plan is in the
space of partial plans (where each state is a partial plan with a set of partially instantiated and ordered
actions), with a least commitment strategy.

These approaches have many advantages for planning and execution in robotics. They properly
manage concurrency or parallel execution. Furthermore, they generally produce plans that are tem-
porally flexible, leaving to the execution the choices of the exact dates of occurrence (controllable
or non-controllable but observable). For this, the execution controller must continually propagate the
time constraints based on the date of occurrence actually observed to ensure that the plan remains
consistent and repairable in case of inconsistency.

Some approaches (e.g., IDEA and T-ReX) offer a paradigm where the planner and the controller
are tightly coupled in a set of reactors, each with its own horizon for planning and execution.

For events as well as intervals, these approaches rely on Simple Temporal Networks (STN)
to model the temporal constraints between the events considered. An STN is a constraint net-
work whose variables are events; constraints between two events ti and tj are of the form:
minij ≤ tj − ti ≤ maxij . The Allen Algebra of intervals [5] (using relations such as before, meets,
overlaps, starts, during, finishes, their symmetrical and equality) can easily be transformed into an
equivalent STN. One has just to translate the relations in precedence (or equalities) on the beginnings
and ends of each interval.

The plan produced is an STN described by the corresponding constraint. Figure 13(a) shows the
STN plan of a Mars rover that must go to a given location, take a picture, communicate the result to
an orbiter during a window visibility, then return to its base. The network can be transformed into
a distance graph (see Figure 13(b) where arcs correspond to the inequalities tj − ti ≤ maxij and
ti − tj ≤ −minij ). One finds the minimum using Floyd-Warshall algorithm 14(a). Here dist[i, j] is
the minimum distance from i to j, initialized with an infinite value when i and j are not constrained.
One then obtains the graph in Figure 13(c).

When an STN is taken as a task to perform, the execution controller must incrementally propagate
the update using algorithm 14(b) (which is of a lesser complexity, O(n + n2) instead of O(n3)). In
the example above, if the first Goto takes exactly 70 seconds, we get the STN in Figure 13(d) and after
propagation the graph in Figure 13(e).

These approaches have been successfully implemented in many robotic experiments (e.g.,
MBARI [100], Willow Garage [83], NASA [44] and LAAS [81]) but their development faces the
following difficulties:
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an assignment of values of controllable events for all possible values of contingent ones. Weak
5For example, in the graph Figure 13(c) to move between t0 and t1, the starting time t0 is controllable, but not the

arrival time t1. Travel time was reduced by propagation from 90 to 85 (Figure 13(c)), but in fact, only the observation after
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(c) After a Floyd-Warshall propagation (Algo 14(a))
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Figure 13: Successive phases of planning and execution of a temporal plan for a Mars exploration
rover.

Floyd-Warshall(dist, n)
for k from 1 to n

for i from 1 to n
for j from 1 to n
dist[i, j] ← min{dist[i, j],

dist[i, k] + dist[k, j]}
(a) Initiale propagation: Floyd-Warshall

Algorithm

Incremental(dist, n, i0, j0)
for i from 1 to n
dist[i, j0] ← min{dist[i, j0],

dist[i, i0] + dist[i0, j0]}
for i from 1 to n

for j from 1 to n
dist[i, j] ← min{dist[i, j0],

dist[j0, j] + dist[i, j]}
(b) Incremental propagation: after changing

the constrain between two events i0 et j0

Figure 14: Temporal contraints propagation algorithms.

controllability ensures that there is a possible value assignment for the controllable ones for all the
values of the contingent ones, if they are known in advance (unrealistic). Dynamic controllability
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ensures that there is an assignment for controllable ones for the values of the past contingent ones.
This last property keeps the flexibility while making sure that a solution remains.

Other approaches (e.g., Aspen/Casper [29]) based on a temporal model produce complete plans
without any flexibility. If a temporal (or a causal) failure occurs when executing the plan, the planner
then repairs it using local search techniques.

4.3 Probabilistic Approaches

Nondeterminism is not an intrinsic property of a system but a property of its model. Interaction with
the real world always involves some level of nondeterminism, that may of may not be grasped in its
model. The same arguments that foster the need for autonomous deliberation in a robot, i.e., open and
diverse environments and tasks, promote the use of nondeterministic models. These allow to handle
various possible interactions between the robot actions and the environment own dynamics, possibly
with probabilistic models. Markov Decision Processes (MDP) provide a convenient representation
for planning under uncertainty. Let us introduce here the general MDP approach, which will be also
useful for section 6 about learning.

Let S be a finite set of states, and A a finite set actions. If an action a is applicable in a state
s, a can lead nondeterministically to any states in F (s, a) ⊆ S. Let P (s′|s, a) be the probability of
reaching state s′ when action a is applied in s; r(s, a) ≥ 0 is the reward associated with a in s. Let
π : S → A be an application that associates to each state s the action to be performed in s. π is called
a policy; it corresponds to a plan that tells the robot which action to carry in each state. π has possibly
loops, i.e., following π from a state s may lead back to s after one or a few steps. The value function
Vπ(s) of a state s under policy for π is the expected sum of rewards of this plan, weighted (to ensure
convergence) by a decreasing coefficient:

Vπ(s) = E[

∞∑
t=0

ξtr(st, π(st))],with ξ < 1

= r(s, π(s)) + ξ
∑

s′∈F (s,π(s))

P (s′|s, π(s))Vπ(s
′)

(7)

The optimal value function for a state s is V ∗(s) for the optimal policy π∗.

V ∗(s) = maxπVπ(s)

= maxa{Q∗(s, a)},with

Q∗(s, a) = r(s, a) + ξ
∑

s′∈F (s,a)

P (s′|s, a)V ∗(s′)
(8)

Dynamic programming leads to a recursive formulation of V ∗ and provides easily implementable
algorithms, such as Value Iteration (see Figure 15).

Value Iteration algorithm [16] terminates when a fixed point is reached, i.e., a full iteration over S
without a change in any V (s). It gives the optimal policy π∗. It can be initialized with an arbitrarily
V (s). In practice one does not need to loop until a fixed point. It is sufficient to make sure that all
updates of V (s) on some iteration over S remain below a threshold ε. The returned solution then
deviates from the optimum by at most 2ε× ξ/(1− ξ).

The above formulation is not goal oriented: it seek an optimal policy for an infinite process. This
formulation can be transformed into a goal-oriented approach by giving an initial state s0, a set of
goal states Sg ⊂ S, and by searching for an optimal policy that leads from s0 to one of the states in
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Value Iteration(S,A, P, r)
until reaching a fixed point do

for each s ∈ S do
for each a applicable in s do

Q(s, a) ← r(s, a) + ξ
∑

s′ P (s′|s, a)V (s′) � (i)
V (s) ← maxa{Q(s, a)}

for each s ∈ S do
π(s) ← argmaxa{Q(s, a)}

Figure 15: Value Iteration algorithm.

Sg. One can also integrate cost distribution on actions and variable rewards function for goal states. In
such a formulation, one is not searching for policy defined everywhere, but for a partial policy, defined
only in states reachable from s0 by this policy. A safe policy π is guarantied to reach a goal from s0.
If a problem has a safe policy, then dynamic programming with ξ = 1 can find an optimal one. The
algorithm Value Iteration applies to the case where there is a safe policy from every state. When this
assumption does not hold, the problem is said to have dead-ends, i.e., states from which a goal is not
reachable. Extensions to dynamic programming algorithms have been introduced, e.g., [20, 16, 9].
For example it is not necessary, nor possible iterate over all S. It is enough to search along states
reachable from s0 with a current policy. One may also estimate Q(s, a) by sampling techniques [68].
The step �(i) is replaced by Q(s, a) ← Q(s, a) +α[r(s, a) + ξmaxa′{Q(s′, a′)}−Q(s, a)], where s′

is taken in F (s, a) by sampling according to the distribution P (s′|s, a). This approach is very useful
in reinforcement learning.

Value Iteration algorithm has a polynomial complexity in |S| and |A|. Unfortunately, most of
the time S has a huge size: it is exponential in the number of the state variables. There are a few
more scalable approaches, using heuristics and hierarchical techniques, e.g., [8, 121, 97, 96, 120]).
Probabilistic planning is a very active research area with may open problems.

Given a policy π, the controller for an MDP is extremely simple. Just iterate over two steps:
• observe the state s

• execute the action π(s)

until reaching a goal state or some other stopping conditions.
The MDP approach offer several runtime advantages. It explicitly manages the nondeterminism

and uncertainty. It can be extended to take into account Partially Observable domains [23]. Modeling
a domain as an MDP is a difficult task, but the MDP formulation can be combined with learning
techniques (see section 6). This explains the success of these approaches in many robotics applications
which will be discussed later.

4.4 Integrating of Motion and Task Planning

Task planning and motion planning are two different problems that use distinct mathematical repre-
sentations. The first is concerned with causal relationship regarding the effects of abstract actions, the
second is concerned with computational geometry and dynamics. In simple cases a robot can decou-
ple the two problems: task planning produces abstract actions whose refinement requires, possibly,
motion planning. The two problems are however coupled for constrained environments and complex
tasks. For example, moving objects in a storage room can make the motion impossible if the task is
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not appropriately organized. Let us discuss here some approaches to the integration of motion and
task planning.

The Asymov planner [25] combines a state-space search approach for task planning (using the FF
planner [63]) with a search in the configuration space for motion planning. It defines a place as a state
in the task planning space, as well as a range of free configurations in Cf . A place is a bridge between
the two search spaces. These two spaces are not explicitly constructed, but for every found task state,
Asymov checks that there are some reachable configurations in Cf . This approach has been extended
to multi-robot problems cooperating over a joint task, e.g. two robots assembling a large furniture
such as a diner table in a cluttered environment.

Another interesting technique uses hierarchical planning in a so-called angelic approach [127]
(the term is borrowed from “angelic nondeterminism” which assumes that out of several issues, the
best one can be chosen). An abstract action can be decomposed in different ways. An abstract plan is
based on abstract actions; its set of possible decompositions is a subset of the product of all possible
decompositions of its actions, some of which are not compatible. It is not necessary to ensure that
all the decompositions are feasible. A plan is acceptable if it has at least one feasible decomposition.
Indeed, the decomposition is not made randomly. The robot decomposes, when needed, each abstract
action by choosing a feasible decomposition, if there is one. The idea is to rely on a lower bound of
the set of feasible decompositions of an abstract plan such as to make sure that this set is not empty.
These lower bounds are computed by running simulations of action decompositions into elementary
steps, using random values of state variables. The planner relies on these estimates for searching in
the abstract state space.

The approach of Kaelbling and Lozano-Perez [71] illustrates another hierarchical integration of
task and motion planning. When planning at the abstract level, estimates regarding geometric infor-
mation are computed with so-called Geometric Advisers. These advisers do not solve completely the
motion planning problem submitted to them, but provide information about how feasible is a given
step that enables the abstract search to continue until reaching a complete plan. When the produced
plan is executed, each step that requires movements triggers a full motion planning. This approach re-
lies on two strong assumptions: geometric preconditions of abstract actions can be calculated quickly
and efficiently (by the geometric adviser); subgoals resulting from decomposition of action are exe-
cutable in sequence. The approach is not complete, i.e., the geometric refinement of a planned abstract
action may fail. However, for problems where actions are reversible at a reasonable cost (i.e., allowing
for backtracking at the execution level) the approach is efficient and robust.

5 Interaction

Most of the approaches presented above make the assumption that there is a single agent in the envi-
ronment: the robot performing the task. But complex missions may require the participation of several
humans and robots. Several approaches address these issues of interaction. For example, Simmons
et al. [111] proposes the Syndicate architecture, an extension to 3T [19], which allows the cooperation
of several robots in collaboration with a human, for the assembly of large structures. Fong et al. [47]
offers an architecture to define interaction models (tasks, teams, resources, human) needed for the
cooperation of a team of astronauts and extra-planetary rovers. In the next two sections, we examine
these increasingly common interactions and how they are accounted for in the planning process.
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5.1 Multi-Robot Interaction

Sometimes, to achieve a complex mission, it is necessary to deploy multiple robots. Several ap-
proaches to the problems of mission planning and execution in a multi-robot framework have been
developed. We may distinguish several types of problems depending on the following features:
• planning is centralized or distributed,

• plan execution by each agent is independent or coordinated,

• planning is done before acting or made as the robots proceed,

• execution failures are repaired, and if yes at which level,

• the robots can communicate between them for coordination and planning.
Many research focuses on multi-robot motion planning, with geometric and kinematic representa-

tions (see section 3), and decomposition techniques generic enough to lead to distributed implementa-
tions [36]. Recent results, e.g., [17], allow to efficiently take into account relative position constraints
between the robots as well as missions featuring several sites to visit.

The Martha project illustrates an approach to manage a fleet of robots handling containers in ports
and airports [4]. The allocation of tasks to robots is centralized, but on a limited horizon. Planning,
execution, refinement and coordination needed for the navigation of robots and the sharing of spacial
resources in the environment are distributed. Robots negotiate among themselves the navigation in
the environment, which is divided into cells (e.g., intersection crossing, convoy mode, overtaking),
and also negotiate their path inside these cells. The deployed system assumes a reliable local com-
munication. Execution deadlocks between multiple robots are correctly detected by the coordination
algorithm, and one of the robots automatically takes control and produces a plan that it redistributes
to the other robots with which it conflicts.

Other works propose an allocation of tasks by an auction mechanism [35] to assign tasks to robots
(cells crossing/surveying). Tovey et al. [124] propose a mechanism to generate appropriate auction
rules adapted to the particular goal a group of exploration rover has (minimize the sum of the distances,
minimize the maximum travelled distance of all robots, minimize the average time to the targets, etc.).
In [132, 26], the authors apply a similar technique to tasks and subtasks of an HTN plan as it is built.
Each robot can win the bids on a task, then decompose into sub-tasks following an HTN method,
and auction all or part of the sub-tasks. After the initial distribution of tasks, robots maintain, during
execution, the ability to auction tasks they failed to perform. Moreover, communication in these
systems is not permanent and complete, thus the replanning/redistribution phases must be planned in
advance.

5.2 Human - Robot Interaction

The development of service robots raises some issues with respect to human-robot interaction [57].
We focus here on approaches which are concerned with planning and the models they use.

Interactive planning (or mixed initiative planning), i.e., planning while keeping humans in the
loop, is used in various areas. The operator takes part in the search for a plan to make choices and
help the planner solve the problem.

Planning for human–robot interaction raises a completely different issue: the plan is generated
automatically by the robot, but must explicitly take into account the interaction with the human while
executing the plan and even in some cases, plan for a shared execution. To this end, the planner has
some models (learned or programmed) of human behaviors [12]. These models specify how humans
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behave with respect to the robot, what are the behaviors of the robot which are acceptable to humans.
They also specify how planned actions translate into commands of the robot [116].

Various planners have been adapted to take into account the role of the human in the plans pro-
duced. Generally, these are multi-agents planners, which have been modified to consider the human
as one of the agents. [24] propose an extension to GOLOG/GOLEX to plan the mission of a robot
museum interacting with visitors. The approach used in [21] is based on MAPL, a PDDL based multi-
agent planner to represent the beliefs of the various agents, the actions and the perception operators.
A compiler then translates these PDDL models. Planning is then performed by the FF planner [63].
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Fig. 10. Plans stock during planning time

The abstraction provided by HATP for plan negotiation is
illustrated by figure 9. In this abstraction we have a small
hierarchy provided by the Refinement Tree except that we do

not show refinement of a task when it is associated to only
one Agent. The idea is that tasks linked to one Agent are
considered as private (it is the responsability of the Agent to
realize it) whereas tasks involving several agents are public
ones (we explain who must do what for these tasks). It
is important to note that although only the abstraction is
presented to robot human partner, the robot has in memory
all the plan until Time Projection. This will be useful to
introduce monitors to check and to influence human partner
commitment during plan execution.

VIII. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

We have described in this paper a task planner called
HATP designed for interactive and collaborative robotic
applications. It is able to produce socially acceptable plans
for several agents by making a social evaluation of plans
from a set of social rules. We have provided several details

Figure 16: A plan produced by HATP with human–robot interaction: the tasks (in black) are decom-
posed into primitive actions for the robot (in blue), actions of the human (in red), and joint actions (in
purple), which require a synchronization [3].

The HATP planner [3] plans in the context of human–robot interactions (e.g., for service robotics).
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This planner extends the HTNs formalism to create plans containing two execution threads, one for
the robot and one for the human who interacts with the robot. Figure 16 shows a plan produced by
HATP. One can distinguish the execution of the robot thread (red) and the user thread (in blue). HATP
differs from the classical HTN planning on several points. Task models and refinement methods
involve human and robot. Furthermore, while the plan is produced, the system considers social rules
to produce plans which are deemed acceptable and understandable to humans. For example, the robot
will favor an action where it gives an object directly to the human rather than an action where it just
lays the object before him. Similarly, when interacting with humans, the robot will favor a position
where it faces the human, and make slower movements when it approaches him. When executing the
plan, the robot must interpret and recognize human actions to properly carry out its plan. For example,
if during a task the robot proposes a tool to human, and if the human loses interest, the robot should
not insist, and wait for the attention of the human to return back to the robot. These good behavior
recipes are not just cosmetic, they enable a more natural interaction between humans and robots.

6 Learning

Machine learning techniques have a very successful impact in many areas, and particularly in robotics.
A variety of computational learning techniques are developed at various levels in robotics, from the
sensory-motor level to the acquisition of tasks or environment models. A good coverage of recent
learning techniques robotics can be found in [106]. We already covered environment mapping issues
in section 3.2. Basic statistical learning techniques are quite useful, in particular for object recognition,
but they are not specific to robotics. Let us review here two approaches that are more specific to
robotics: reinforcement learning and learning from demonstration.

6.1 Reinforcement Learning

Reinforcement Learning (RL) refers to methods that improve the performance of a learner by direct
interaction with the world [70, 117]. It is based on a trial and error approach. A robot learns how to
act by maximizing the long term perceived benefit of its actions. Generally in RL, the learner has no
teacher providing examples of good behaviors in certain situations or advices about how to choose
actions. The only feedback given to the robot at each step is a scalar: the reward associated with the
performed action. As long as the robot has not tried all feasible actions in all encountered situations,
it will not be sure that it uses the best actions. Reinforcement learning has to solve the compromise of
exploration vs exploitation: the robot must make the most of what it already knows to maximize the
benefit of its behavior. To find the best one, it must explore the options that are not known enough.

To introduce the approach, consider the very simple case where a single action solves completely
the task at hand and has no impact on the next task. Suppose a stationary environment and nonnegative
rewards. Let ri(a) > 0 be the reward received after running an action a at the ith time. We can
estimate the quality Q(a) of an action a that has been executed ka times by its average award:

Q(a) =

{
q0 if ka = 0,
1
ka

∑ka
i=0 ri(a) otherwise.

(9)

This estimate is maintained by incremental updates:

Q(a) ← Q(a) + α[rka+1(a)−Q(a)],with α =
1

ka + 1
(10)
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When ∀a, ka → ∞, the choice of the action which maximizes the sum of rewards is given by
argmaxa{Q(a)}. However, as long as the exploration of alternatives has not been sufficient, the robot
will use other options, according to various heuristics. One may define a function Selecta{Q(a)} by
one of the following methods:
• Selecta{Q(a)} = argmaxa{Q(a)} with probability (1 − ε), and a randomly drawn action other
argmaxa{Q(a)} with probability ε, where ε is decreasing with experience,

• Selecta{Q(a)} chooses an action according to a probabilistic sampling distribution, for example,

with Boltzmann sampling, according to a probability distribution given by e
Q(a)
τ , where τ is de-

creasing with experience.
When the environment is stationary, the update of Q(a) with Equation 10 after executing an action a
becomes increasingly weak with large ka. If the environment is not stationary, we can keep α < 1
constant. Note also that the initialization value q0 fosters exploration if q0 is high with respect to other
rewards. For example, if q0 = rmax, the maximum reward, new actions will be preferred to those
already tested.

With these basics notions, let us now consider the interesting case where a task is performed by
the combination of several actions, each interfering with the following ones, influencing the overall
success of the task and the sum of rewards. The framework generally used is that of Markov decision
processes introduced previously (Section 4.3). The robot seeks to learn an optimal policy that max-
imizes the value V (s) over all s. This value is estimated from the observed rewards of the chosen
actions. A major problem is how to distribute rewards over the entire task. Indeed, the rewards give
an immediate return in the short term, while the quality of achievement of the task to be maximized
is described by the long term sum of rewards over some horizon.

One approach is to learn the MDP model then to apply planning techniques to find the optimal
policy and use it. Learning a model means collecting enough statistics through an exploratory phase
to estimate the probability distributions P (s′|s, a) and the rewards r(s, a). An interesting applica-
tion of this direct approach combines a model learning technique with a receding horizon planning
algorithm [91]. It was illustrated for learning indoor navigation skills, combining different motion,
localization and control modalities. The approach is applicable to any task for which the robot has
several alternative methods whose performance depend on local features of the environment. The
performance function is difficult to model. It is learned as an MDP whose state space is an abstract
control space, which focuses on the features of the environment and current task context (including
the method in use); actions correspond to available methods for performing the task. The state space
is of small size (a few thousands states) which allows computing an optimal policy at each step of a
receding horizon planning.

This direct approach requires a costly exploratory phase to estimate the model. It is often better
to start performing the task at hand, given what is known, while continuing to learn, i.e., combine
the two phases of acquiring a model and finding the best action for the current model. Q-learning
algorithm meet this objectives while avoiding to build explicitly the MDP model.

Let us use the MDP notation introduced earlier, in particular r(s, a) is the observed reward after
performing action a in state s, and Q(s, a) is the estimated quality a in s at current time. Q∗(s, a), as
given by Equation 8, is unknown but it can be estimated by the expression:

Q(s, a) = r(s, a) + ξ
∑

s∈F (s,a)

P (s′|s, a)maxa′{Q(s′, a′)} (11)

The basic idea of the Q-learning algorithm (17) is to perform an incremental update of Q(s, a), similar
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to Equation 10. This update does not use the unknown probability parameters of the model, but the
quality of successor states s′, as observed in the current experience. This update is given in line (i) in
the algorithm below.

Q-learning
until Termination do
a ← Selecta{Q(s, a)}
execute action a
observe r(s, a) and resulting state s′

Q(s, a) ← Q(s, a) + α[r(s, a) + ξmaxa′{Q(s′, a′)} −Q(s, a)] � (i)
s ← s′

Figure 17: Q-learning algorithm

The values of Q(s, a) are initialized arbitrarily. The function Selecta{Q(s, a)} favors
argmaxa{Q(s, a)} while allowing for the exploration of non maximal action with a frequency de-
creasing with experience. The parameter α ∈ [0, 1] is set empirically. When it is close to 1, Q follows
the last observed values by weighting down previous experience of a in s; when it is close to zero,
the previous experience is more important and Q changes marginally. α can be decreasing with the
number of instances (s, a) encountered.

A variant of this algorithm (known as “ SARSA” for State, Action, Reward, State, Action) takes
into account a sequence of two steps (s, a, s′, a′) before performing the update of the estimated quality
of a in s by Q(s, a) ← Q(s, a) + α[R(s, a) + ξQ(s′, a′) − Q(s, a)]. One can prove the asymptotic
convergence of these two algorithms to optimal policies.

Other model-free reinforcement learning algorithms proceed by updating the value function V (s)
rather then the function Q(s, a). Updates are performed over tuples (s, a, s′) in a similar way:
V (s) ← V (s) + α[r(s, a) + ξV (s′)− V (s)]. This algorithm called TD(0), is combined with a
Select function permitting exploration. It is part of a family of algorithms TD(λ) which perform
updates over all states, with a weight depending on the frequency of meeting each state.

Let us also mention the DYNA algorithm and its variants that combine learning and planning:
it maintains and updates an estimate of probabilities P (s′|s, a) and rewards r(s, a); at each step two
updates are performed, a Q-learning type with Q(s, a) ← r(s, a)+ξ

∑
s′ P (s′|s, a)maxa′{Q(s′, a′)},

for the current s and a, and a Value-Iteration type for other couples (state, action) chosen randomly or
according to certain priority rules, taking into account new estimates. Here, the experience allows to
estimate the model and the current policy. The estimated model in turn allows to improve the policy.
Each step is more computationally expensive than in Q-Learning, but the convergence occurs more
rapidly in the number of experimental steps.

Reinforcement learning is widely used in robotics, but it is rarely implemented with explicit state
space and tables of values V (s) or Q(s, a). The state space is generally continuous; it includes the
configuration space of the robot and its environment. Even if one manages to discretize the state space
appropriately (e.g., in grid type environment approaches), the astronomic size of S makes the explicit
representation of S impractical. Moreover, the above algorithms are used to learn a good behavior
for states encountered during learning phase, but they are not useful for states that have never been
encountered: they do not allow to generalize. If one uses a continuous state space with a metric
distance, one can make the reasonable assumption that nearby states are typically associated with
close estimates of V (s) or Q(s, a), and thus use similar policies. Parametric approaches implement
this idea.
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Here S and A are described by two vectors of state and control variables. Let θ = (θ1, . . . , θn)
be a vector of parameters. We assume that Q(s, a) can be approximated parametrically by Qθ(s, a),
as a function of θ. This function is given a priori, e.g., a linear function of state and control variables.
Learning involves estimating the parameters θ of this model. Q-Learning algorithm is the same as
above, except that the update (i) does not change values in a table, but the parameters of Qθ(s, a).
The process generally involves minimizing the mean squared error of Q with respect to Q∗. The
latter is estimated at each iteration from the last observed update. The gradient algorithm follows this
formulation:

θ ← θ − 1

2
α∇θ[r(s, a) + ξmaxa′{Qθ(s

′, a′)} −Qθ(s, a)]
2

← θ + α[r(s, a) + ξmaxa′{Qθ(s
′, a′)} −Qθ(s, a)]

∂Qθ(s, a)

∂θ

(12)

This last expression replaces the (i) in the previous algorithm for each parameter θi. A similar formu-
lation can be obtained for the estimate of Vθ.

Reinforcement learning with a parametric approach is used with success in robotics. It has been
implemented in simple applications, for example to stabilize an inverse pendulum or to play darts, and
in more complex demonstration, such as helicopter acrobatic flying [1, 31]. One of the main problems
of these approaches is defining the action rewards.

Indeed, the previous algorithms indicates improperly “observe r(s, a)”. But rewards are seldom
directly observable by the the robot. One must provide the means to estimate the reward according
to what is perceived. Sometimes the function r(s, a) is easy to specify, for example as the deviation
from equilibrium for a stabilization task, or the deviation from the target for tracking task. But often
it is not, for example, how to specify the rewards of elementary actions for the task of driving a car?

This issue leads to the inverse reinforcement learning problem [2]. Here, the teacher gives the
optimal behavior, the problem is to find the corresponding reward function that generates this behav-
ior. In the case of an explicit finite MDP, the problem reduces to the following formulation (derived
directly from Equation 8): we know π∗(s) for all s; we can express Q(s, a) as a function of the
unknown values of r(s, a) and we want Q(s, a) to be maximal for a = π∗(s). This formulation is
under-specified: it has infinitely many solutions that are of no interest. It is extended with an addi-
tional criterion, for example maximize the expression:

∑
s[Q(s, π∗(s)) − maxa�=π∗(s)Q(s, a)]. The

problem is solved by linear programming.
In parametric approaches we also define rewards rθ as a function (usually linear) of state and

control variables and seek to estimate its parameters. The previous formulation is not directly ap-
plicable because π∗ is known for a small number of state samples. However the main constraint
that the distribution of states generated by rθ must be the same as the one provided by the teacher
leads to a formulation that one can solve iteratively. Each iteration combines two steps, a quadratic
programming optimization criterion and a dynamic programming similar to Value-Iteration.

As the reader has certainly noticed, these approaches are akin to the techniques used for inverse
problems. They are also related to learning from demonstration techniques, discussed next.

6.2 Learning from Demonstration

As underlined above, the specification of the reward functions needed in reinforcement learning is
far from obvious. Moreover, it is rare to have a fully observable Markov state space. We know
how to transform a state space into a Markovian one, but this requires significant engineering and
adds generally unobservable components. The complexity of learning and planning techniques in
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partially observable MDP is prohibitive. Moreover, the experimental complexity (in the total number
of needed trials) is generally much more expensive in robotics than the computational complexity.
Reinforcement learning requires for converging a very large number of experiments. Finally, it is
common that the task to learn cannot be treated as a simple sequence of pairs (state, action). It
requires a plan or a control structure, such as repeating a subsequence of actions until a termination
condition. For these reasons, learning from demonstration is a good alternative when the robot can
benefit of the demonstrations of a teacher.

In learning from demonstration (see the survey of Argall et al. [7]), a teacher gives to the robot
the appropriate actions in well-chosen settings. This allows the teacher to control the learning process
and gradually focus learning on the most difficult part of the task. The robot generalizes from the
teacher demonstrations and learns the required behavior, which can be expressed as a policy in simple
cases, or as a mapping from sensory states to plans in the general case. Learning from demonstration
is akin to supervised learning. However in supervised learning, the teacher provides directly correct
labels for training cases. Learning from demonstration involves other issues about how to map the
teacher’s sensing and acting spaces to those of the robot learner.

In the simplest setting, learning from demonstration reduces to acquiring the correct behavior
from teleoperated training cases. The teacher acts directly in the actuator space and the proprioceptive
sensor space of the robot. The latter learns actions directly as its own control environment. These
approaches have resulted in many implementations, such as those presented by Sigaud and Peters
[106] or Peters and Ng [95].

In the general case, the teacher acts with its own actuators rather than those of the robot to illustrate
the movements and manipulations she wants to teach. The robot observes the teacher from outside.
In order to learn, the robot must build up a double mapping:
• a sensory mapping to interpret the observed demonstrations, and

• a control mapping to transpose the demonstrated actions to its own actuators.
This double mapping is very complex. It often limits learning from demonstration and requires the
teacher to have pedagogic skills, that is, to understand at a low level how the robot will be able to map
the teacher demonstrations in its own actuation capabilities.

Moreover, learning from demonstration can be performed with or without the acquisition of a
task model. The first case corresponds generally to inverse reinforcement learning. In the latter
case, learning can give rise to the acquisition of a sensory-motor mapping. Here, the techniques use
supervised learning, by classification or regression. Finally, learning can also lead to the acquisition
of a mapping from sensory states to plans. These can be obtained by plan recognition methods. Plans
can also be synthesized from the teacher specifications of operators and goals (final and intermediate)
associated with observed sensory states.

Approaches relying plan recognition and synthesis allow to address a significantly more general
class of behaviors that can be demonstrated by a teacher and acquired by a robot (including iterative
actions and control structures). They also permit extended generalization since they lead to acquire
basic principles and use the robot planning capabilities. They are finally more natural and easier for
the teacher, since the teacher’s actions are interpreted in terms of their effects on the environment
rather than their sole order in a sequence of commands. They are illustrated for example in the work
of Nicolescu and Mataric [94], Rybski et al. [103], but remain at a quite preliminary stage.
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7 Integration and software architecture

Beyond the physical integration of mechanical, electrical, electronic, etc. systems, a robot is also a
complex information processing system, from data acquisition to electronic commands. It integrates,
various processing paradigms from real time control loops, with a hierarchy of response time, up to
decisional functions conferring the autonomy and robustness required by the variability of tasks and
environments. The integration of these processes should be based on architectures that defines how
to articulate all these components, how they communicate and how they share data and computing
resources. In any case, they must provide development methodologies to allow programming, inte-
grating and testing of the different modules. They should provide tools and libraries to facilitate the
development and deployment of the various components on the robot, especially those of interest to
us: planning and execution control.

7.1 Architecture Paradigms

Most robot architectures are developed following different paradigms:

Reactive Architectures The reactive architectures, popularized by the subsumption architecture
of Brooks [22], are conceptually simple. They are composed of modules which connect sensors and
effectors through an internal state machine. These modules are hierarchically organized with the out-
puts of some which can inhibit or weight the outputs or the composition of others. These architectures
were relatively popular because they are a priori easy to setup. They do not require a model of the
world (the world is its own model) and are adapted to reactive simple tasks, without planning. A robot
like the Roomba which has most likely been developed following this concept, achieves its task plan.
But there is no quality nor efficiency objective formally pursued. Ultimately, these architectures still
remain popular and are used in mono task applications. But for application associated to the variabil-
ity of tasks and environments, the programming and setting of inhibitors/weights quickly becomes
infeasible.

Hierarchical Architectures The hierarchical architectures and layered architectures remain the
most popular in robotics. They propose to organize all robot software in two or three layers, from
the functional level up to the decisional level (planning and acting). The former includes the sensory-
motor functions to control sensors, effectors, and to perform the associated processing. In some
instances, an intermediate level is used for execution control to verify safety conditions. Tools are
typically associated with these architectures to ease the integration of the different components. Thus,
the LAAS architecture [67] relies on GenoM to develop functional modules (see Figure 18), and
various tools (R2C, OpenPRS, Transgen, IxTeT) for execution, supervision and tasks planning. The
CLARATy architecture provides C++ basic classes which facilitate the development of the functional
layer. TDL and ASPEN/Casper respectively implement the acting and the planning component.

Architectures Teleo-Reactive More recently, teleo-reactive architectures such as IDEA [44] and
T-ReX [100] have emerged. They propose to decompose the problem in agents rather than in layers.
Each agent 6 consists of a planner/actor tandem. It produces plans by establishing sequences of tokens
on timelines representing the evolution of the state variables of the system, and ensures their execution.
Planning is performed by a temporal planner (e.g. Europa [48] or APSI [49]) based on Allen [5]

6Agents are called reactors in the T-ReX terminology.
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temporal intervals logic. These agents are organized depending on the relevant state variables. Each
agent has an adapted latency, execution period and planning horizons. They communicate between
them by sharing some timelines (with priority rules on which agent can change value on a shared
timelines) with a dispatcher responsible for integrating the new values of token depending on the
execution.

These architectures have two advantages. They have a unified agent architecture model (even
functional modules are expected to be developed using this paradigm). They use the same model-
ing language, providing an overall consistency of models. This architecture has been deployed in a
number of experiments, notably: an autonomous underwater vehicle [84], and on the PR2 robot from
Willow Garage [83].

However, the deployment of these approaches is hindered by two problems. The first is perfor-
mance. Agents are seldom able to properly plan fast enough (e.g. in less than a second), to be used to
model functional modules. The second is the difficulty to develop the model (e.g. writing compatibil-
ities and constraints), especially when modeling non-nominal cases.

Finally, not in these categories, there are reactive hybrid architectures that add one or more plan-
ners to reactive modules. The role of the planners is to propose plans to configure, via a coordination
system, the activities of the reactive modules. The difficulty is to write this coordination module.
Beaudry et al. [11] illustrate a proposal in this regard that combines a motion planner and an HTN
planner which explicitly manage time; this approach seems promising for non-critical applications.

7.2 Robustness, Validation and Verification

The robustness of the software deployed on a robot poses a major problem. A first step is to robustify
key components to overcome the environmental hazards, sensory noise, and the great variability of
environments. One can require that a functional module, handling a sensory-motor function, knows
his range of use. It should know and recognize when its data cannot be properly used, to allow
corrective actions to be taken. For example, a component that makes stereo vision will recognize
when its cameras are not properly calibrated; similarly, monitoring the torque on the wheel, a module
that manages locomotion should detect wheel slippage or wheel blockage. Similarly, the components
responsible for decision making and using formal approaches (e.g., constraints based, proposition
logic,etc.) should ensure that the produced plans will not lead to undesirable states.

However, the composition of these components, as robust as they individually are, does not lead
directly to an overall safety properties of the robot. For example the component taking scientific
images and the locomotion component can both be correct, but all possible executions of these two
components together may not be acceptable, e.g., the parameters to capture high-resolution images
while moving are constrained (to avoid blurry images). The safety and robustness of embedded real-
time systems [62] has been an active field for many year. With respect to robotics, one has also
to consider the requirements for decisional autonomy. Modeling languages, such as UML [69] and
AADL [39], can be used. They provide tools and specification methods. But we need to go further
with formal approaches that provide validation and verification.

In the robotics domain, one should mention Orccad [112] and MAESTRO [34], which are based
on the synchronous languages paradigm (Esterel) and have been used to implement robotic controller.
Simmons et al. [110] propose a model checking approach to verify the robot controller written in the
TDL language [109]. Within the LAAS architecture, the R2C [99] models all the constraints that
we want to ensure and it formally checks at runtime that the commands sent by the decisional level
are consistent with the model and the current state of the robot. Some research are also interested
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in verifying that the code executed by the functional modules of a robot formally satisfy its logical
specification [50] (at the cost of logically annotating all the code used in the module).

More recently, some work around GenoM intended to produce a formal model of the entire func-
tional layer of a robot [15]. The modeling is based on the BIP formalism (Behavior, Interaction,
Priority) [10] and exploits the fact that each GenoM module is an instance of a generic module (see
Figure 18).

posters

Execution Tasks

Execution Service

Control & 
Functional 

IDS

Requests Reports

Control Task

Control Service

Figure 18: The internal organization of a GenoM module. The control flow is organized as follows:
the control task receives requests and starts the execution of corresponding services in the execution
tasks. When execution is complete, the control task returns a report to the caller. Writing or reading
posters provide the data flow between the modules.

The BIP formalism [10] provides a methodology to model embedded systems from (i) atomic
components; (ii) connectors that define the interactions possible between the ports of atomic compo-
nents; and (iii) a priority relation, to select among the valid interactions. An atomic component is
defined by: (i) a set of ports P = {p1, . . . , pn} which are used for synchronization with the other
components; (ii) a set of states S = {s1, . . . , sk} representing states where the component awaits
synchronizations; (iii) a set of local variables V , and (iv) a set of transitions. A transition is a tuple of
the form (s, p,Gp, fp, s

′), representing a step from state s to s′. The transition may modify the local
variables when executing the function fp : V → V . A transition is valid iff the guard Gp (boolean
condition on V ) is true and the interaction on p is possible. For example, the transition empty to full
in Figure 19 is possible if x > 0, and if the interaction in is possible. The variable y then takes the
value f(x). The transition from full to empty has not guard, but requires an interaction on port out.

In this approach, all the components of a generic GenoM module are modeled in BIP. All modules
of the functional layer are obtained by recomposition of these basic BIP models. It should be noted
that the executable code associated to the state of the original GenoM service automata are now within
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emptystart full

in out

in, 0 < x, y ← f(x)

out, ,

Figure 19: A simple example of an atomic BIP component comprising two states and two transitions.
Transition from empty to full is associated with an interaction on port in, a boolean condition 0 < x,
and a change of the value of y. The transition in the other direction requires only an interaction with
the out port.

the f(x) transitions function in the BIP model. This approach is extended to the complete functional
layer of a robot, and provides an extremely fine grained formal model of the system considered (e.g.,
the state in which each component is, the possible interactions at any time, etc.). This model is then
used by the BIP Engine (an automata player which checks online guards and interactions of the entire
model, and fire the valid transitions) to control the execution on the actual robot. This model can
also be verified and validated with formal tools like D-Finder [14]. This formal verification method
composes component invariants φi which define for each component a logical property it satisfies, and
the interaction invariants Ψ that logically define the possible interactions γ between the components
considered. The extraction of these invariants is automatic. The inference rule:

if (
∧
i

φi) ∧Ψ ⇒ Φ then ‖γ{Bi}i < Φ >

specifies that if the conjunction of invariants (
∧

i φi) ∧ Ψ (overestimation of the reachable states)
implies a formula Φ, then the parallel composition ‖γ{Bi}i also satisfies Φ.

This method allows, among other things, to verify that there is no deadlock in the system or to
check safety properties. Note that this technique based on components and interactions invariants can
potentially take into account search spaces larger than the ones model checking techniques can handle.

8 Conclusion

In this paper, we presented an overview of the state of the art at the intersection of two broad fields
which are Robotics and Artificial Intelligence. We reviewed models and techniques for addressing
problems of planning and execution control of movements and tasks, interaction and learning. We
discussed how to integrate decision-making functions with sensory-motor functions within a robot
architecture. Most of these issues have been outlined very synthetically. Some were slightly detailed
to provide the reader with illustrative frequently used representations and algorithms.

As underlined in the introduction, robotics is a multidisciplinary field. Significant progress in
robotics can be expected from major advances in its basic disciplines. Further, robot can be a catalyst
research target to advance these disciplines. For example, a light and fast mechanical gripper with high
dexterity, an inexpensive accurate 3D range sensor, or an image recognition algorithm with broad and
reliable performances for ordinary objects that can be found in a house or store, will substantially
enrich the functional capabilities of current platforms.
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But, as we have also pointed out, robotics research is primarily integrative. One can certainly
make progress in terms of basic components for the handling some particular task or environment.
But the autonomy of a machine when facing a diversity of environments and tasks requires progress
in the integrated perception - decision - action control loop.

This loop is at the core of research in robotics. It requires explicit models of objects at vari-
ous levels, from their physical appearance to their functions. It also requires models of activities,
events and processes that constitute the environment and its agents, including the robot. It requires
knowledge representations adapted to these models. These models are mathematically heterogeneous,
that is continuous/discrete, symbolic/numeric, geometric/topologic, deterministic/stochastic, etc. In
robotics, the term “knowledge representations” is necessarily plural. It also requires a variety of learn-
ing techniques to acquire and improve these models. This is the research agenda, for which we have
reviewed the progress over the past two or three decades, and on which more work remains to be done.
This agenda is as relevant to self-contained robots, which integrate all their components on a single
platform, as well as to distributed robots. Distribution is also an important item of this agenda. It
concerns the distribution of cognitive functions over the components and functions of a single robot,
as well as the distribution of robotics functions over a networks of sensors, actuators and processing
resources on a large scale.

It can also be argued that the perception - decision - action control loop is at the core of AI re-
search. Continues progress is being made in all individual subfields of AI. For example, statistical and
hybrid techniques have led to dramatic advances in automatic natural language processing, illustrated
for example by the victory of the WATSON system in the question/answer game “Jeopardy” [41].
Representations coupling first-order logic and uncertainty management, such as probabilistic first or-
der logic [86], open remarkable opportunities, especially for the problems of planning and learning
that we discussed here.

But the AI objective, namely to understand, model and implement intelligence, is seen by many
researchers as being expressed in the perception - decision - action control loop. Consider the problem
of “anchoring”, i.e., maintaining a mapping between a symbol and the sensory data related to the
same physical object [32], or the more general problem of “symbol grounding” [60], i.e., associating
a symbol, in its context, to a signified content, object, concept or property. These problems requires
the coupling of cognitive mechanisms to sensory-motor functions able to interact independently with
the world to which symbols refer (the level T3 of the Turing test of Harnad [61]). For both fields, the
coupling of Robotics and AI remains a very fertile research area.
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ABSTRACT 
Several production systems either for goods or services can be modeled by a network where nodes are 
production centers, warehouses, distributions and others, and arcs represent the relationship between 
nodes. Nodes and arcs are often subjected to random failures that may result from several causes. These 
networks include one or more sources and one or more destinations. Given the stochastic nature of the 
failure, the reliability and the robustness of the network become an important criteria for safety, 
economical and environment reasons. 
 
Several methods based on graph theory and stochastic processes are proposed in the literature. The 
concepts of minimal paths set (MPS) and minimal cuts set (MCS) as well as decomposition techniques 
based on Bayes' theorem have been widely used. The performance of these methods is greatly affected by 
network size (number of nodes and arcs) and its density. 
 
Generally, except for special structure of some networks (e.g series, parallel, standby, etc.) there is no 
mathematical expression based on the reliability of its nodes and its arcs that has been proved compact for 
representing the expression of the reliability function of any network. This paper attempts to provide 
solutions to this problem by proposing and testing a unified approach based on MPS/MCS and Binary 
Decision Diagrams (BDD). This approach is illustrated by several simple examples. A tool has been 
developed to handle complex networks such as telecommunication networks and other network’s tests 
published in the literature. 
 

Keywords 
Reliability, Networks, Algorithms, MPS, MCS, BDD. 
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1. INTRODUCTION 
 
The assessment of network’s reliability has been addressed in many papers [1, 9, 10, 11, 12, 13, 14, 18, 
20, 24, 25, 26, 35, 39]. Efficient computation techniques have been proposed for the network reliability 
over a given mission duration. The complexity of network’s reliability algorithms increases with the size 
of the networks (number of arcs and nodes). 
 
This paper proposes an integrated approach using MPS/MCS and BDD for generating the network 
structure function which can be used for evaluating the reliability of networks so that the considered 
system meets its end-to-end service availability objective. A concrete telecommunication is used to testify 
the applicability of all the algorithms that will be proposed in the following sections and a series of 
network’s benchmark are also used to show the strength of the algorithms and to compare their 
performance within those published in the literature. 
 
Most of the methods and algorithms proposed up to now for determining the reliability of networks 
consider three categories of techniques which are different in the form but are very close in substance. 
These techniques have been discussed in many publication researches and concern a large number of 
physical systems such as electric power systems, telecommunication networks [24, 25, 26, 27], traffic and 
transportation systems, just to name a few. Generally, reliability engineers model the functioning and the 
physical connectivity of system components by a network. Mathematically, a network is a graph 𝐺𝐺 𝑉𝑉,𝐸𝐸  
in which 𝑉𝑉 represents the components (e.g. devices, computers, routers, etc.) and 𝐸𝐸 the interconnections 
(e.g. HF-VHF and microwave transporters [24]. In the sequel, we suppose that graphs and networks and 
systems are of the same object and can be used to design the same system. 
 
Network reliability analysis consists of evaluating the 2-terminal reliability of networks (𝐾𝐾 and all-
terminal) [10, 11, 31, 33]. General theory, has discussed extensively two techniques; exact [1, 8, 12, 13, 
14, 20, 21, 24, 34] and approximate methods [23]. The exact method uses the concept of MPS/MCS [11, 
25, 26, 29, 32, 34, 35]. Determining MCS is essential not only to evaluate the reliability but also to 
investigate different scenarios in order to find for instance the redundant components that could be 
replaced to improve the load point reliability and for predicting the risk that a part of a system could fail 
or not with a certain probability value [26, 38]. Enumerating all MCS may be a preferable way if the 
number of paths is too huge to be practically enumerated than the number of cuts. Examples of this kind 
of preferences is the 2x100 lattice which has 299  paths and just 10000 cuts [20], and complete network 
with 10 nodes contains 109601 minimal paths and just 256 cuts [26].  In existing algorithms [11, 24, 35], 
minimal paths are deduced from the graph using simple and systematic recursive algorithms that 
guarantee the generated paths set to be minimal. The enumeration of MCS is more problematic because 
they need advanced mathematics, set theory and matrices manipulation. Many algorithms have been 
published in the literature and some of them are implemented in commercial tools. Enumeration appears 
to be the most computationally efficient. An initiative of solution has been proposed in [21, 22] where 
author presented a method for generating MPS directly from MCS, or vice-versa. It starts with the 
inversion of the reliability expression accomplished by a recursive method combining a 2-step application 
of De Morgan's theorem. Yan et al. [34] presented a recursive labelling algorithm for determining all 
MCS in a directed network, using an approach adapted from dynamic programming algorithms. The 
algorithm produces all MCS, and uses comparison logic to eliminate redundant cuts. This algorithm is an 
enumeration technique derived from the approach of Jensen & Bellmore [14] and follows an extension of 
Tsukiyama et al. [32] to improve the computational efficiency and space requirements of the algorithm. 
Jasmon and Kai [13] use an algorithm which proceeds by deducting first the link cuts set from node cuts 
set and, second the basic minimal paths using network decomposition. In addition to the enumeration of 
cuts set directly, it is possible to obtain them from the inversion of minimal paths [22], Shier and Whited 
[29]. In such topic, one of the best algorithms is proposed by Al-Ghanim [3] which is based on a heuristic 
programming algorithm for generating all MPS and Cuts set. Recently, Rebaiaia and Ait-Kadi [24] 
propose an elegant and fast algorithm for enumerating MPS using a modified DFS technique [30]. The 
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procedure uses each discovered path to generate new MPS from subpaths. The above procedure is 
repeated until all minimal paths (MP) are found. The algorithm didn’t produce any redundant MPS. 
Furthermore, they extended their work with theoretical proofs and the usage of sophisticated techniques 
for dynamic data structures manipulation of complex networks.  
 
The paper is structured as follows. Section 2 presents some related preliminaries. Section 3 details some 
algorithms for determining the MPS, MCS and BDD. Section 4 and section 5 present some experienced 
applications using a series of benchmarks and a real telecommunication system. The paper concludes the 
paper in section 6. 
 
2. Backgrounds 

 
2.1. Stochastic Graph 

 
A probabilistic graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) is a finite set 𝑉𝑉 of nodes and a finite set 𝐸𝐸 of incidence relations on the 
nodes called edges. The edges are considered as transferring a commodity between nodes with a 
probability 𝑝𝑝 called reliability. They may be directed or undirected and are weighted by their existence 
probabilities. The graph in such case, models a physical network, which represents a linked set of 
components giving services. The reliability of networks is defined as the probability that systems 
(networks) will perform their intended function without failure over a given period of time. Figure 1 
shows an example of an undirected graph where node 1 and node 6 are respectively initial node and 
terminal node.  

For a specified set of nodes 𝐾𝐾 ⊆ 𝑉𝑉 of 𝐺𝐺, we denote the 𝐾𝐾-terminal reliability of 𝐺𝐺 by 𝑅𝑅 𝐺𝐺! . When 
𝐾𝐾 = 2, 𝑅𝑅 𝐺𝐺!  is called a 2-terminal (or terminal-pair) reliability which defines the probability of 

connecting 𝑠𝑠, 𝑡𝑡  a source node with a target node [25, 31, 33]. A success set, is a minimal set of the 
edges of 𝐺𝐺 such that the vertices in 𝐾𝐾 are connected; the set is minimal so that deletion of any edges 
causes the vertices in 𝐾𝐾 to be disconnected and this will invalidate the evaluation of the reliability. 
Topologically, a success set is a minimal tree of 𝐺𝐺 covering all vertices in 𝐾𝐾. The computation of the 𝐾𝐾-
terminal reliability of a graph may require efficient algorithms. One such solution can be derived directly 
from the topology of the network by constructing a new parallel-series network using MPS of the original 
network such that each minimal path constitutes a branch of the parallel-series graph. Then, a 
characteristic expression 𝛷𝛷 𝑥𝑥   called structure function is derived from the disjoint expressions of paths 
terms, and from which the reliability is evaluated after applying Boolean simplification processing [25].  

 

Figure 1. A probabilistic weighted graph with six nodes 𝟏𝟏,𝟐𝟐,𝟑𝟑,𝟒𝟒,𝟓𝟓,𝟔𝟔  and nine undirected edges (𝐚𝐚,𝐛𝐛, . . . , 𝐢𝐢). 

 

2.2. Multicomponent Reliability  
 
Let 𝑓𝑓(𝑥𝑥) be the failure probability density function of any component and 𝑡𝑡 the time period beginning 
from time zero. The reliability of a component may be expressed as 
 

𝑅𝑅 𝑡𝑡 = 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
!

!
	  

(1)	  
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When a system is composed by 𝑚𝑚 identical components disposed in series or 𝑛𝑛 identical components 
disposed in parallel, the mathematical expressions of their reliability function are respectively 
 

𝑅𝑅! 𝑡𝑡 = 𝑓𝑓!(𝑥𝑥)
!

!

!

!!!

𝑑𝑑𝑑𝑑	  
	  
(2)	  
	  
	  

𝑅𝑅! 𝑡𝑡 = 1 − 1 − 𝑓𝑓!(𝑥𝑥)𝑑𝑑𝑑𝑑
!

!

!

!!!

	  
(3)	  

 
It is simple to combine series with parallel and parallel with series configurations. Their expressions are 
respectively 
 

𝑅𝑅!,! 𝑡𝑡 = 1 − 1 − 𝑓𝑓!,!(𝑥𝑥)
!

!

!

!!!

!

!!!

𝑑𝑑𝑑𝑑	  
(4)	  
	  
	  
	  

𝑅𝑅!,! 𝑡𝑡 = 1 − 1 − 𝑓𝑓!,!(𝑥𝑥)𝑑𝑑𝑑𝑑
!

!

!

!!!

!

!!!

	  
(5)	  

 

When systems are complex and does not possess a well-defined structure, it would be necessary to 
determine their reliability using methods which proceed by successive transformations. An interesting 
introduction to such methods has been published in [25] and [26]. 

2.3 Structure Function 
Consider a system composed of m components numbered from 1 to m. Each of these components may be 
in functioning state or in failed state with a probability 𝑝𝑝! respectively a probability 𝑞𝑞!. Let 𝑥𝑥! be the state 
component and 𝑥𝑥 the state vector, they can be defined as follows: 
 

𝑥𝑥!(𝑡𝑡) =
1    if  the  component  𝑖𝑖   node/edge is  UP  at  time  𝑡𝑡                                                
0      if  the  component  i   node/edge   is  down                                                                     

 
𝑥𝑥 = (𝑥𝑥!, 𝑥𝑥!,…    , 𝑥𝑥!) is the state vector of a system S of order m such that 𝑥𝑥 ∈ 𝛺𝛺! = 0,1 ! the state space 
of the system. 
 
Mathematically, any system can be represented by its structure function which is an application function 
taking its value in the Boolean domain, such that, 
  

𝛷𝛷 𝑥𝑥 =     
1    if  the  system  is  functioning  when  the  state  vector  is  𝑥𝑥                      
0      if  the  system  has  failed  when  the  state  vector  is  𝑥𝑥                                     

 
In this paper, we consider only systems that are coherent represented by structure functions that are non-
decreasing [4]. 
 
2.4 Minimal Paths set and Minimal Cuts set 
 
Let 𝑠𝑠, 𝑡𝑡  be a fixed initial and terminal nodes in a graph representing the system. A minimal path is any 
path composed by a series of successive edges linking s to t and such that if any one of such edges is 
removed from the path, the link between s to t is broken. Respectively, a minimal cut is composed by a 
set of edges such that if one edge is removed from the cut, the link from s to t still functioning. Note that 
if we remove any minimal cut edge, the link from s to t is broken. 
 
Thus, a minimal paths set (MPS) respectively a minimal cuts set (MCS) are composed by all minimal 
paths respectively all minimal cuts in the graph. 
 
If we suppose that a system is composed by a set MPS = 𝑃𝑃!,𝑃𝑃!,… ,𝑃𝑃!  and a set MCS = 𝐶𝐶!,𝐶𝐶!,… ,𝐶𝐶!   
its structure function can be expressed by: 
 
 

𝛷𝛷 𝑥𝑥 = 𝑚𝑚𝑚𝑚𝑚𝑚
!!!!!

𝑚𝑚𝑚𝑚𝑚𝑚
!∈!!

𝑥𝑥! = 𝑚𝑚𝑚𝑚𝑚𝑚
!!!!!

𝑚𝑚𝑚𝑚𝑚𝑚
!∈!!

𝑥𝑥!	   (6) 

 

 

and if 𝐸𝐸 𝛷𝛷 𝑋𝑋  is expected mathematical expression, the reliability of a system is computed according to 
the following formula: 

 

𝑅𝑅(𝐺𝐺) = 𝐸𝐸 𝛷𝛷 𝑋𝑋 = 𝑃𝑃𝑃𝑃 𝛷𝛷 𝑋𝑋 = 1 = 𝛷𝛷 𝑋𝑋 𝑃𝑃𝑃𝑃{𝑋𝑋 = 𝑥𝑥}
!∈!!

	   (7) 

 
 
and such that the probability  𝑃𝑃𝑃𝑃{𝑋𝑋 = 𝑥𝑥} is determined by 𝑝𝑝! = 𝑃𝑃𝑃𝑃{𝑋𝑋 = 1} and 𝑞𝑞! = 𝑃𝑃𝑃𝑃 𝑋𝑋 = 0 = 1 − 𝑝𝑝!. 
 
Note that the formula in Equation (6) means that the structural function of any complex system is 
equivalent to the structural function after transforming such system to a parallel-series or series-parallel 
one. Figure 2 shows clearly such transformation. 
 
2.5 Reliability Evaluation 
 
After enumerating MPS and MCS, the reliability evaluation needs the development of the symbolic 
expression in terms of the probability of the various components being operational/non-operational, for 
that calculation, Equation (6) and Equation (7) can be used. But, it is not always easy to do so, especially 
for complex systems. Fortunately, we can find in the literature many other techniques and algorithms to 
calculating the reliability [12, 16, 17, 33, 34].  
 
2.5.1  Illustrative example 
 
Consider a directed bridge network as represented in Figure 2 (a). The MPS (Figure 2 (c)), MCS (Figure 
2 (d)), the structure function and the reliability expression are respectively: 

MPS : 𝑝𝑝! = 𝑥𝑥!, 𝑥𝑥! ;  𝑝𝑝! = 𝑥𝑥!, 𝑥𝑥!  and 𝑝𝑝! = 𝑥𝑥!, 𝑥𝑥!, 𝑥𝑥! . 

MCS: 𝑐𝑐! = 𝑥𝑥!, 𝑥𝑥! ;  𝑐𝑐! = 𝑥𝑥!, 𝑥𝑥! ;  𝑐𝑐! = 𝑥𝑥!, 𝑥𝑥!  and 𝑐𝑐! = 𝑥𝑥!, 𝑥𝑥!, 𝑥𝑥! . 

 

Structure  function:  

𝛷𝛷 𝑋𝑋 𝑡𝑡 = 1 − (1 − 𝑥𝑥!𝑥𝑥!) 1 − 𝑥𝑥!𝑥𝑥! 1 − 𝑥𝑥!𝑥𝑥!𝑥𝑥!  (Determined from MPS), and the reliability is, 
𝑅𝑅 𝑡𝑡 = Pr 𝛷𝛷 𝑋𝑋 𝑡𝑡 = 1                   = 𝑟𝑟!𝑟𝑟! + 𝑟𝑟!𝑟𝑟! + 𝑟𝑟!𝑟𝑟!𝑟𝑟! − 𝑟𝑟!𝑟𝑟!𝑟𝑟!𝑟𝑟! − 𝑟𝑟!𝑟𝑟!𝑟𝑟!𝑟𝑟! − 𝑟𝑟!𝑟𝑟!𝑟𝑟!𝑟𝑟! + 𝑟𝑟!𝑟𝑟!𝑟𝑟!𝑟𝑟!𝑟𝑟! 
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set of edges such that if one edge is removed from the cut, the link from s to t still functioning. Note that 
if we remove any minimal cut edge, the link from s to t is broken. 
 
Thus, a minimal paths set (MPS) respectively a minimal cuts set (MCS) are composed by all minimal 
paths respectively all minimal cuts in the graph. 
 
If we suppose that a system is composed by a set MPS = 𝑃𝑃!,𝑃𝑃!,… ,𝑃𝑃!  and a set MCS = 𝐶𝐶!,𝐶𝐶!,… ,𝐶𝐶!   
its structure function can be expressed by: 
 
 

𝛷𝛷 𝑥𝑥 = 𝑚𝑚𝑚𝑚𝑚𝑚
!!!!!

𝑚𝑚𝑚𝑚𝑚𝑚
!∈!!

𝑥𝑥! = 𝑚𝑚𝑚𝑚𝑚𝑚
!!!!!

𝑚𝑚𝑚𝑚𝑚𝑚
!∈!!

𝑥𝑥!	   (6) 

 

 

and if 𝐸𝐸 𝛷𝛷 𝑋𝑋  is expected mathematical expression, the reliability of a system is computed according to 
the following formula: 

 

𝑅𝑅(𝐺𝐺) = 𝐸𝐸 𝛷𝛷 𝑋𝑋 = 𝑃𝑃𝑃𝑃 𝛷𝛷 𝑋𝑋 = 1 = 𝛷𝛷 𝑋𝑋 𝑃𝑃𝑃𝑃{𝑋𝑋 = 𝑥𝑥}
!∈!!

	   (7) 

 
 
and such that the probability  𝑃𝑃𝑃𝑃{𝑋𝑋 = 𝑥𝑥} is determined by 𝑝𝑝! = 𝑃𝑃𝑃𝑃{𝑋𝑋 = 1} and 𝑞𝑞! = 𝑃𝑃𝑃𝑃 𝑋𝑋 = 0 = 1 − 𝑝𝑝!. 
 
Note that the formula in Equation (6) means that the structural function of any complex system is 
equivalent to the structural function after transforming such system to a parallel-series or series-parallel 
one. Figure 2 shows clearly such transformation. 
 
2.5 Reliability Evaluation 
 
After enumerating MPS and MCS, the reliability evaluation needs the development of the symbolic 
expression in terms of the probability of the various components being operational/non-operational, for 
that calculation, Equation (6) and Equation (7) can be used. But, it is not always easy to do so, especially 
for complex systems. Fortunately, we can find in the literature many other techniques and algorithms to 
calculating the reliability [12, 16, 17, 33, 34].  
 
2.5.1  Illustrative example 
 
Consider a directed bridge network as represented in Figure 2 (a). The MPS (Figure 2 (c)), MCS (Figure 
2 (d)), the structure function and the reliability expression are respectively: 

MPS : 𝑝𝑝! = 𝑥𝑥!, 𝑥𝑥! ;  𝑝𝑝! = 𝑥𝑥!, 𝑥𝑥!  and 𝑝𝑝! = 𝑥𝑥!, 𝑥𝑥!, 𝑥𝑥! . 

MCS: 𝑐𝑐! = 𝑥𝑥!, 𝑥𝑥! ;  𝑐𝑐! = 𝑥𝑥!, 𝑥𝑥! ;  𝑐𝑐! = 𝑥𝑥!, 𝑥𝑥!  and 𝑐𝑐! = 𝑥𝑥!, 𝑥𝑥!, 𝑥𝑥! . 

 

Structure  function:  

𝛷𝛷 𝑋𝑋 𝑡𝑡 = 1 − (1 − 𝑥𝑥!𝑥𝑥!) 1 − 𝑥𝑥!𝑥𝑥! 1 − 𝑥𝑥!𝑥𝑥!𝑥𝑥!  (Determined from MPS), and the reliability is, 
𝑅𝑅 𝑡𝑡 = Pr 𝛷𝛷 𝑋𝑋 𝑡𝑡 = 1                   = 𝑟𝑟!𝑟𝑟! + 𝑟𝑟!𝑟𝑟! + 𝑟𝑟!𝑟𝑟!𝑟𝑟! − 𝑟𝑟!𝑟𝑟!𝑟𝑟!𝑟𝑟! − 𝑟𝑟!𝑟𝑟!𝑟𝑟!𝑟𝑟! − 𝑟𝑟!𝑟𝑟!𝑟𝑟!𝑟𝑟! + 𝑟𝑟!𝑟𝑟!𝑟𝑟!𝑟𝑟!𝑟𝑟! 
 
 
 

set of edges such that if one edge is removed from the cut, the link from s to t still functioning. Note that 
if we remove any minimal cut edge, the link from s to t is broken. 
 
Thus, a minimal paths set (MPS) respectively a minimal cuts set (MCS) are composed by all minimal 
paths respectively all minimal cuts in the graph. 
 
If we suppose that a system is composed by a set MPS = 𝑃𝑃!,𝑃𝑃!,… ,𝑃𝑃!  and a set MCS = 𝐶𝐶!,𝐶𝐶!,… ,𝐶𝐶!   
its structure function can be expressed by: 
 
 

𝛷𝛷 𝑥𝑥 = 𝑚𝑚𝑚𝑚𝑚𝑚
!!!!!

𝑚𝑚𝑚𝑚𝑚𝑚
!∈!!

𝑥𝑥! = 𝑚𝑚𝑚𝑚𝑚𝑚
!!!!!

𝑚𝑚𝑚𝑚𝑚𝑚
!∈!!

𝑥𝑥!	   (6) 

 

 

and if 𝐸𝐸 𝛷𝛷 𝑋𝑋  is expected mathematical expression, the reliability of a system is computed according to 
the following formula: 

 

𝑅𝑅(𝐺𝐺) = 𝐸𝐸 𝛷𝛷 𝑋𝑋 = 𝑃𝑃𝑃𝑃 𝛷𝛷 𝑋𝑋 = 1 = 𝛷𝛷 𝑋𝑋 𝑃𝑃𝑃𝑃{𝑋𝑋 = 𝑥𝑥}
!∈!!

	   (7) 

 
 
and such that the probability  𝑃𝑃𝑃𝑃{𝑋𝑋 = 𝑥𝑥} is determined by 𝑝𝑝! = 𝑃𝑃𝑃𝑃{𝑋𝑋 = 1} and 𝑞𝑞! = 𝑃𝑃𝑃𝑃 𝑋𝑋 = 0 = 1 − 𝑝𝑝!. 
 
Note that the formula in Equation (6) means that the structural function of any complex system is 
equivalent to the structural function after transforming such system to a parallel-series or series-parallel 
one. Figure 2 shows clearly such transformation. 
 
2.5 Reliability Evaluation 
 
After enumerating MPS and MCS, the reliability evaluation needs the development of the symbolic 
expression in terms of the probability of the various components being operational/non-operational, for 
that calculation, Equation (6) and Equation (7) can be used. But, it is not always easy to do so, especially 
for complex systems. Fortunately, we can find in the literature many other techniques and algorithms to 
calculating the reliability [12, 16, 17, 33, 34].  
 
2.5.1  Illustrative example 
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𝛷𝛷 𝑋𝑋 𝑡𝑡 = 1 − (1 − 𝑥𝑥!𝑥𝑥!) 1 − 𝑥𝑥!𝑥𝑥! 1 − 𝑥𝑥!𝑥𝑥!𝑥𝑥!  (Determined from MPS), and the reliability is, 
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set of edges such that if one edge is removed from the cut, the link from s to t still functioning. Note that 
if we remove any minimal cut edge, the link from s to t is broken. 
 
Thus, a minimal paths set (MPS) respectively a minimal cuts set (MCS) are composed by all minimal 
paths respectively all minimal cuts in the graph. 
 
If we suppose that a system is composed by a set MPS = 𝑃𝑃!,𝑃𝑃!,… ,𝑃𝑃!  and a set MCS = 𝐶𝐶!,𝐶𝐶!,… ,𝐶𝐶!   
its structure function can be expressed by: 
 
 

𝛷𝛷 𝑥𝑥 = 𝑚𝑚𝑚𝑚𝑚𝑚
!!!!!

𝑚𝑚𝑚𝑚𝑚𝑚
!∈!!

𝑥𝑥! = 𝑚𝑚𝑚𝑚𝑚𝑚
!!!!!

𝑚𝑚𝑚𝑚𝑚𝑚
!∈!!

𝑥𝑥!	   (6) 

 

 

and if 𝐸𝐸 𝛷𝛷 𝑋𝑋  is expected mathematical expression, the reliability of a system is computed according to 
the following formula: 
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and such that the probability  𝑃𝑃𝑃𝑃{𝑋𝑋 = 𝑥𝑥} is determined by 𝑝𝑝! = 𝑃𝑃𝑃𝑃{𝑋𝑋 = 1} and 𝑞𝑞! = 𝑃𝑃𝑃𝑃 𝑋𝑋 = 0 = 1 − 𝑝𝑝!. 
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Figure 2. a) System structure,  b) Reliability bloc diagram, c) Reliability structure based on MPS.  

 d) Reliability structure based on MCS. 
 
 
 

3. Algorithm for determining Network Structure Function  
 
We have just say above that the structure function plays a very important role for calculating the 
reliability of any system provided that it can be modelled as a graph, and their determination is not as 
easy as we thought, especially for large networks. Also, to make the structure function expression 
possible, we have to enumerating all the minimal paths/minimal cuts. For doing that, we can apply any 
one of the many algorithms published in the literature [25]. But, the problem with MPS and MCS 
determination is related to their size that can grows exponentially and reaches millions of paths/cuts for 
graphs that are supposed to be simple such as complete, grid and lattice graphs that represent the most 
adequate structures to represent systems similar to those of telecommunication and transportation 
networks [26, 20, 35] . 
 
There is another interesting mathematical tool called BDD for binary decision diagram that can be used 
for determining the system structure function and possibly from which it can be possible to generating 
both MPS and MCS [6, 7, 8, 26, 27, 35].  
 
3.1 Binary Decision Diagram 
 
Binary Decision Diagrams are the state-of-art data structure for manipulating and simplifying large 
Boolean expressions such that of analogic and digital function, and specifically those that cannot be 
handled with traditional techniques such as Table truth and Karnaugh mape. Bryant [6, 7] was the first to 
binary decision diagrams for symbolic verification of integrated circuits. The problem with BDD 
representation despite their effectiveness is their exponential growing size due to wrong ordering 
declaration of variables. Bollig et al. [5] demonstrate that improving the Variable Ordering of OBDD is 
NP-Complete. Ruddell [28] first used an algorithm based on dynamic programming techniques to reduce 
the size of the BDD.  
 
In engineering, Coudert and Madre  [8] and Rauzy [27] applied first, BDDs for evaluating networks 
reliability. Figure 3 shows the BDD relative to the network presented in Figure 2, and its representation in 
the computer memory. 

 

 

 
 
 

 
Figure 2. a) System structure,  b) Reliability bloc diagram, c) Reliability structure based on MPS.  

 d) Reliability structure based on MCS. 
 
 
 

3. Algorithm for determining Network Structure Function  
 
We have just say above that the structure function plays a very important role for calculating the 
reliability of any system provided that it can be modelled as a graph, and their determination is not as 
easy as we thought, especially for large networks. Also, to make the structure function expression 
possible, we have to enumerating all the minimal paths/minimal cuts. For doing that, we can apply any 
one of the many algorithms published in the literature [25]. But, the problem with MPS and MCS 
determination is related to their size that can grows exponentially and reaches millions of paths/cuts for 
graphs that are supposed to be simple such as complete, grid and lattice graphs that represent the most 
adequate structures to represent systems similar to those of telecommunication and transportation 
networks [26, 20, 35] . 
 
There is another interesting mathematical tool called BDD for binary decision diagram that can be used 
for determining the system structure function and possibly from which it can be possible to generating 
both MPS and MCS [6, 7, 8, 26, 27, 35].  
 
3.1 Binary Decision Diagram 
 
Binary Decision Diagrams are the state-of-art data structure for manipulating and simplifying large 
Boolean expressions such that of analogic and digital function, and specifically those that cannot be 
handled with traditional techniques such as Table truth and Karnaugh mape. Bryant [6, 7] was the first to 
binary decision diagrams for symbolic verification of integrated circuits. The problem with BDD 
representation despite their effectiveness is their exponential growing size due to wrong ordering 
declaration of variables. Bollig et al. [5] demonstrate that improving the Variable Ordering of OBDD is 
NP-Complete. Ruddell [28] first used an algorithm based on dynamic programming techniques to reduce 
the size of the BDD.  
 
In engineering, Coudert and Madre  [8] and Rauzy [27] applied first, BDDs for evaluating networks 
reliability. Figure 3 shows the BDD relative to the network presented in Figure 2, and its representation in 
the computer memory. 

 

 



162

Efficient Algorithms for Reliability Evaluation of General NetworksM-L. Rebaiaia and D. Ait-kadi

Frontiers in Science and Engineering - Vol. 6 - n° 1 - 2016
An International Journal Edited by The Hassan II Academy of Science and Technology

 
 
 

 
Figure 2. a) System structure,  b) Reliability bloc diagram, c) Reliability structure based on MPS.  

 d) Reliability structure based on MCS. 
 
 
 

3. Algorithm for determining Network Structure Function  
 
We have just say above that the structure function plays a very important role for calculating the 
reliability of any system provided that it can be modelled as a graph, and their determination is not as 
easy as we thought, especially for large networks. Also, to make the structure function expression 
possible, we have to enumerating all the minimal paths/minimal cuts. For doing that, we can apply any 
one of the many algorithms published in the literature [25]. But, the problem with MPS and MCS 
determination is related to their size that can grows exponentially and reaches millions of paths/cuts for 
graphs that are supposed to be simple such as complete, grid and lattice graphs that represent the most 
adequate structures to represent systems similar to those of telecommunication and transportation 
networks [26, 20, 35] . 
 
There is another interesting mathematical tool called BDD for binary decision diagram that can be used 
for determining the system structure function and possibly from which it can be possible to generating 
both MPS and MCS [6, 7, 8, 26, 27, 35].  
 
3.1 Binary Decision Diagram 
 
Binary Decision Diagrams are the state-of-art data structure for manipulating and simplifying large 
Boolean expressions such that of analogic and digital function, and specifically those that cannot be 
handled with traditional techniques such as Table truth and Karnaugh mape. Bryant [6, 7] was the first to 
binary decision diagrams for symbolic verification of integrated circuits. The problem with BDD 
representation despite their effectiveness is their exponential growing size due to wrong ordering 
declaration of variables. Bollig et al. [5] demonstrate that improving the Variable Ordering of OBDD is 
NP-Complete. Ruddell [28] first used an algorithm based on dynamic programming techniques to reduce 
the size of the BDD.  
 
In engineering, Coudert and Madre  [8] and Rauzy [27] applied first, BDDs for evaluating networks 
reliability. Figure 3 shows the BDD relative to the network presented in Figure 2, and its representation in 
the computer memory. 

 

 

 
Figure 3. (a) : ROBDD corresponding to the network of figure 2.(a) and  

(b) : its representation code in memory similar to table in figure 5 (right). 

 

The implementation and manipulation of BDD algorithms is composed by three procedures, restrict, 
apply and ite. The are used for simplifying and reducing Boolean functions. For example, the ite  for (If _ 
Then _ Else) function for a Boolean expression is expressed by 

𝑓𝑓 = 𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥,𝐹𝐹!,𝐹𝐹! =   𝑥𝑥.𝐹𝐹! + 𝑥𝑥.𝐹𝐹!;  with 𝐹𝐹! = 𝑓𝑓!!! and 𝐹𝐹! = 𝑓𝑓!!!. 
The following pseudo-code gives the ite function. 
 

Function ite(f, g, h) 
    if f = 0 then 
         Return h; 
    else if f = 1 then 
              Return g; 
          else if (g = 1) ∧ (h = 0) then 
              Return f; 
               else if g = h then 
                  Return g; 
                     else if ∃ computed-table entry (f,  g, h,H) 
then 
                        Return H; 
                            end if 
                      xk ←top variable of f, g, h; 
                      H ← new non-terminal node with label 
xk; 
                    then H ← ite (f |xk=1, g |xk=1,  h |xk=1); 
                       else H ← ite (f |xk=0, g |xk=0, h |xk=0); 
          Reduce  H; 
  Add entry (f, g, h,H) to computed-table; 
          Return  H; 
  end. 

 
Another important algorithm incorporated in BDD is the apply procedure which can manipulating 
Boolean operator like conjunction, disjunction and complementation Boolean operators and the objective 
is to mix individual formulas composing a Boolean expression. An example of composition using apply 
procedure is shown in Figure 4. 
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Figure 4.  APPLY procedure mixing the minimal paths formulas of the Network in Figure 2. 

 
 
3.1.1 Algorithm for BDD procedure 
 
The representation and the simplification of a Boolean expression proceeds in 4-steps: 
 
- Construct the binary decision tree (BDT) associated with the graph formula. 
- Transform the BDT to a BDD by applying the following rules : 

 
a- Merging equivalent leaves of a binary decision tree. 
b- Merging isomorphic nodes.  
c- Elimination of redundant tests 

 
- Transform the BDD to OBDD by just a wise choice on variables and then to obtain a Reduced 

OBDD 
- OBDD can be reduced to a ROBDD by repeatedly eliminating in a bottom-up fashion, any instances 

of duplicate and redundant nodes. If two nodes are duplicates, one of them is removed and all of its 
incoming pointers are redirected to its duplicate. If a node is redundant, it is removed and all 
incoming pointers are redirected to its just one child.  

In the following, we propose three categories of algorithms for determining the structure function of any 
graph network. The first algorithm try to determine the MPS, the second the MCS and the third is more 
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3.2 Algorithm for MPS determination 
 
Let  𝐺𝐺 = (𝑉𝑉,𝐸𝐸) be the graph network modelling a system and suppose that the couple 𝑠𝑠, 𝑡𝑡  represents the 
initial and the terminal nodes of the graph.  
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known recursive algorithm called depth first search (DFS) which search successive nodes and edges 
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Function stack S = pathDFS(G, v, z)   
    setLabel(v, VISITED)    
    S.push(v)                       
    if   v = z   
      return S.elements()  
    for all e in G.incidentEdges(v)  
      if getLabel(e) = unvisited 
            w ← opposite(v,e)  
      if getLabel(w) = unvisited 
           S.push(e) 
           pathDFS(G, w, z) 
           S.pop(e)   
      else 
       S.pop(v) 
end 
Program Main() 
      Input: A connected graph with node set, edge set, a  
source node, and a sink node . 
Declaring dynamics vectors and stacks (put in them 
zeros) 
Declaring initial and terminal nodes (v, z) 
Do While .true. 
   pathDFS(G, v, z) 
   if “the last minimal path have been encountered” 
   return .false. 
enddo 
Output: All MPS in the graph. 

 
3.2.1 Example 

Using the graph in figure 1 and applying the MPS algorithm, we determine all the minimal paths for 
directed and undirected graphs. 

 

a. Directed graph 
 

 

 
 

Figure 5.  A 6-node, 9-link example network (directed) 
 
 
 
 
 

 
 
 
 

 
Figure 4.  APPLY procedure mixing the minimal paths formulas of the Network in Figure 2. 
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Function stack S = pathDFS(G, v, z)   
    setLabel(v, VISITED)    
    S.push(v)                       
    if   v = z   
      return S.elements()  
    for all e in G.incidentEdges(v)  
      if getLabel(e) = unvisited 
            w ← opposite(v,e)  
      if getLabel(w) = unvisited 
           S.push(e) 
           pathDFS(G, w, z) 
           S.pop(e)   
      else 
       S.pop(v) 
end 
Program Main() 
      Input: A connected graph with node set, edge set, a  
source node, and a sink node . 
Declaring dynamics vectors and stacks (put in them 
zeros) 
Declaring initial and terminal nodes (v, z) 
Do While .true. 
   pathDFS(G, v, z) 
   if “the last minimal path have been encountered” 
   return .false. 
enddo 
Output: All MPS in the graph. 

 
3.2.1 Example 

Using the graph in figure 1 and applying the MPS algorithm, we determine all the minimal paths for 
directed and undirected graphs. 

 

a. Directed graph 
 

 

 
 

Figure 5.  A 6-node, 9-link example network (directed) 
 
 
 
 
 

 
 

Table 1. The MPS corresponding to the network in Figure 5. 
 

# Minimal Pathset 
1 1, 3, 5, 7, 9 
2 1, 3, 5, 8 
3 1, 3, 6, 9 
4 1, 4, 7, 9 
5 1, 4, 8 
6 2, 5, 7, 9 
7 2, 5, 8 
8 2, 6, 9 

 
 

b. Undirected graph (Figure 1) 
 
Because the graph is undirected we must duplicating the edges as two arcs in both opposite directions and 
then to rename them differently. Table 2 gives such renaming.  
 
 

Table 2.  Adjacent matrix of the network in Figure 1. 
 
 
 
 

 
 
 

 
 
 

Table 3.  The MPS corresponding to the network in Figure 1. 
 

# Minimal Pathset 
1 1,  4,  8,  12,  16 
2 1,  4,  8, 13 
3 1, 4,  9, 15, 13 
4 1, 4, 9, 16 
5 1, 5, 11, 9, 16 
6 1, 5, 12, 16 
7 1, 5, 13 
8 2, 7, 5, 12, 16 
9 2, 7, 5, 13 
10 2, 8, 12, 16 
11 2, 8, 13 
12 2, 9, 15,13 
13 2, 9, 16 

 
 
 

 Nodes 1 2 3 4 5 6 
 1  1 2    
 2 3  4 5   
G = 3 6 7  8 9  
 4  10 11  12 13 
 5   14 15  16 
 6    17 18  
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3.3 Algorithm for MCS determination 
We propose three algorithms for enumeration all minimal cuts set in a graph. They are as follows: 
 
3.3.1 Algorithm for directed graphs 
This algorithm is similar of the one published by Yan et al [34], but instead using set theory as a support 
to data structure, it uses lists objects. It is as follows:  
 
Algorithm	  DirectedMCS	  
	  	  Let	  𝐴𝐴! ,	  𝑂𝑂𝑂𝑂!,	  𝑝𝑝,	  𝑘𝑘,	  𝑆𝑆!	   are	   successively	   set	  of	   input	  and	  
output	  arcs	  to	  and	  from	  a	  node	  𝑗𝑗,	  	  p	  is	  a	  label,	  k	  is	  node	  
name	  and	  𝑆𝑆!.	  
	  	  Step	   1.	   Set	   𝑋𝑋! = 1 ,𝑌𝑌! = 2,3,⋯ , 𝑛𝑛 	   	   //	   𝑛𝑛 ∶	   is	   the	  
number	  of	  nodes	  	  
- Node	  1	  is	  marked	  
- Select	  the	  successor	  and	  predecessor	  of	  node  𝑗𝑗	  

(say   𝑗𝑗 )	  or	  (𝑂𝑂𝑂𝑂! , 𝐼𝐼𝐴𝐴!)	  and	  define	  	  
- 𝑋𝑋! = 𝑋𝑋!!! + 𝑗𝑗 	  ,	  𝑌𝑌! = 𝑌𝑌!!! − 𝑗𝑗 	  and	  determine	  the	  

𝐶𝐶!
!	  using	  the	  formula:	  

𝐶𝐶!
! = 𝐶𝐶!

! ∪ 𝑂𝑂𝑂𝑂! − 𝐶𝐶!
! ∩ 𝐼𝐼𝐴𝐴!,	  𝑝𝑝 = 1,2,3,⋯ , 𝑆𝑆! 	  for	  all	  𝑘𝑘.	  

	  	  	  Step	  2.	  	  
- 𝑖𝑖𝑖𝑖  𝑌𝑌! = 𝑛𝑛 	  and	  all	  nodes	  of	  𝑋𝑋! = 1,2,3,⋯ , 𝑛𝑛 − 1 	  

have	  been	  marked	  then	  return	  and	  STOP.	  
else	  GOTO	  Step	  1	  

end.  
 
 
3.3.2 Algorithm for undirected graphs 
There are many algorithms published in the literature used for determining MCS, but few of them are 
simple to be used especially the following one: 
 
Algorithm UndirectedMCS 
Let 𝑋𝑋 be the set of nodes including the initial node and such that these nodes are connected between 
themselves, and let 𝐺𝐺 ∗ 𝑖𝑖 be the graph the transformation of the graph 𝐺𝐺 in which the node 𝑖𝑖 has been 
merged into 𝑋𝑋 by deleting any edge connecting 𝑖𝑖 and 𝑋𝑋. 
Let (𝑠𝑠, 𝑡𝑡) be the initial and the terminal nodes of the graph, and suppose that 
 𝑖𝑖 = 𝑠𝑠 (initialization); hash table = nil; MCS = nil; (hash table and MCS are empty);  
 Begin 
  If 𝐺𝐺(𝐸𝐸,𝑉𝑉) is empty (there isn’t at least two nodes linked by an edge) 
  Return and STOP 
  else if (𝑖𝑖 = 𝑡𝑡) return 
        else 𝐺𝐺 = 𝐺𝐺 ∗ 𝑖𝑖, 𝑋𝑋 = 𝑋𝑋 +    𝑖𝑖 ; 
               If (𝑋𝑋  is present in the hash table) return;  
               else Add 𝑋𝑋  𝑡𝑡𝑡𝑡  ℎ𝑎𝑎𝑎𝑎ℎ  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡; end 
             Add  X to MCS; 
              For all  𝑖𝑖  adjacent to  𝑋𝑋        do 
                Call Undirected MCS 
             end 
  end 
end.	  
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We propose three algorithms for enumeration all minimal cuts set in a graph. They are as follows: 
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name	  and	  𝑆𝑆!.	  
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𝐶𝐶!
! = 𝐶𝐶!
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have	  been	  marked	  then	  return	  and	  STOP.	  
else	  GOTO	  Step	  1	  

end.  
 
 
3.3.2 Algorithm for undirected graphs 
There are many algorithms published in the literature used for determining MCS, but few of them are 
simple to be used especially the following one: 
 
Algorithm UndirectedMCS 
Let 𝑋𝑋 be the set of nodes including the initial node and such that these nodes are connected between 
themselves, and let 𝐺𝐺 ∗ 𝑖𝑖 be the graph the transformation of the graph 𝐺𝐺 in which the node 𝑖𝑖 has been 
merged into 𝑋𝑋 by deleting any edge connecting 𝑖𝑖 and 𝑋𝑋. 
Let (𝑠𝑠, 𝑡𝑡) be the initial and the terminal nodes of the graph, and suppose that 
 𝑖𝑖 = 𝑠𝑠 (initialization); hash table = nil; MCS = nil; (hash table and MCS are empty);  
 Begin 
  If 𝐺𝐺(𝐸𝐸,𝑉𝑉) is empty (there isn’t at least two nodes linked by an edge) 
  Return and STOP 
  else if (𝑖𝑖 = 𝑡𝑡) return 
        else 𝐺𝐺 = 𝐺𝐺 ∗ 𝑖𝑖, 𝑋𝑋 = 𝑋𝑋 +    𝑖𝑖 ; 
               If (𝑋𝑋  is present in the hash table) return;  
               else Add 𝑋𝑋  𝑡𝑡𝑡𝑡  ℎ𝑎𝑎𝑎𝑎ℎ  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡; end 
             Add  X to MCS; 
              For all  𝑖𝑖  adjacent to  𝑋𝑋        do 
                Call Undirected MCS 
             end 
  end 
end.	  

 
 
3.3.3 Algorithm for determining MCS from MPS 
 
Locks [22] and Shier and Whited [29] propose a technique for obtaining MCS by complementing MPS 
using DeMorgen’s laws [19].  

 

If we transpose the idea of generating MCS by inversion but instead on Boolean formulas, we applied 
such idea directly on the structure of the BDD (e.g. Figure 3.(a)).  
The procedure to deduce the MCS is a depth first search algorithm; it works on the graph using data 
information’s taken from matrix of the Figure 3 (b). It can be presented as follows: 
 
Procedure Generation_of  MCS 
- Place the squared node on top of a stack 1  //* 

records DFS visits to ROBDD nodes *//. 
- Place the squared node on top of a stack 2  //* 

records cut’s nodes. 
- Place on the top of the stack 1 all the ascending 

nodes of the top variable in the stack. 
- Place the node top of the stack 1 on top of the 

stack 2, if the edge (link) is dotted. 
- Continue until the variable reach the root node. 
- If so, a cut has been found. Write the content of 

the stack 2 as a line of a matrix. Remove top 
variable from stack 1 and from stack 2. 

- Continue the procedure until stack 1 is empty. 
- Apply the filtering process by removing all the 

redundant paths (cuts) using the matrix of paths 
(cuts) 

- Display MSC Matrix. 
end 
 
3.4 Algorithm for determining the reliability from BDD data structure 
 
Network reliability is calculated the following algorithm: 
 
 
Procedure Reliability_Evaluation(F, G) 
  if ( F == 0) return 1     //*  Boolean value 1 (one)  *// 
  else  if  (F == 1) return 0     //*  Boolean value 0 (zero)  *// 
         else  if (computed-table has entry {F, P_F}) 
                    return  P_F 
                 else  P_F = Prob(F1) + P(x) * (Prob(F2)-  Prob(F1)) 
               end 
        end 
  Insert_computed_table ({F, P_F}) 
  return  P_F 
  end 
end 
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records DFS visits to ROBDD nodes *//. 
- Place the squared node on top of a stack 2  //* 

records cutÕ s nodes. 
- Place on the top of the stack 1 all the ascending 

nodes of the top variable in the stack. 
- Place the node top of the stack 1 on top of the 

stack 2, if the edge (link) is dotted. 
- Continue until the variable reach the root node. 
- If so, a cut has been found. Write the content of 

the stack 2 as a line of a matrix. Remove top 
variable from stack 1 and from stack 2. 

- Continue the procedure until stack 1 is empty. 
- Apply the filtering process by removing all the 

redundant paths (cuts) using the matrix of paths 
(cuts) 

- Display MSC Matrix. 
end 
 
3.4 Algorithm for determining the reliability from BDD data structure 
 
Network reliability is calculated the following algorithm: 
 
 
Procedure Reliability_Evaluation(F, G) 
  if ( F == 0) return 1     //*  Boolean value 1 (one)  *// 
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               end 
        end 
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end 
 
 

The following BDD structure shows how the values corresponding to each level are communicated to the 
upper level until the root. 
 

 
Figure 6. Solution given by the earlier algorithm 

 
4. Experimental results 
 
The proposed algorithms and procedures have been implemented in MatLab 8 and Java Jdk 1.6. A 
communicating interface has been written to render easy data and results transfer between MatLab system 
and Java packages running under jGrasp a graphical tool written in Java JDK. The operating system is 32 
bits and 2038 MO of Windows Vista of Microsoft. The machine is an HP notebook PC with an Intel(R) 
core (TM) 2 Duo processor of 1.67. The benchmark networks in figure 9 were used and the results are 
shown in Table 4 and Table 5. All the networks are 2-terminal and they have been used in different 
publication papers. We can remark from table 5, that the value of execution time is interesting despite the 
fact that the performance of the machine characteristics is not high. The importance of this work shows 
the efficiency of the algorithms. Note that no comparison was made with another implementation but they 
can be compared for example with the results of Lin et al. [20].  
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Table 4. Benchmark results for 2-terminal networks 

 
Networks MPS MCS Time(sec.) 

A 8 12 0.075591 

B 18 110 0.282727 

C 115 85 313.17 

D 33 72 11.29 

E 35 30 0.046 

F 114 562 21236.06 

G 10 959 818.80 

H 29 29 0.708676 

I 25 20 0.332611 

J 13 21 4.059842 

K 44 528 2572.03   

L 6 23 0.226500 

M 36 96 11.166 

N 100 16 8.3297 

O 98 105 283.38 

P 5 16 0.768533 

Q 13 9 0.945836 
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Table 5. Computational results of experimental networks. 
 

Networks Nodes Links MPS Runtime Seconds Reliability value 

A 18 29 44 0.060 0.99185255 

B 11 18 36 0.031 0.87046009 

C 36 60 252 0.368 0.88653767 

D 20 60 432 38.062 0.96302007 

E 20 60 780 >60 0.99712 

F 13 56 1808 1.029 0.98989967 

G 17 50 136 >60 0.99806 

H 16 48 98 0.063 0.98781674 

I 6 20 65 0.117 0.99998996 

 
 
5.   CASE STUDY- A Radio communication network  
 
To illustrate the performance of the algorithms presented in sections 3 and 4, we propose a practical 
application to a case study problem of undirected regional radio communication network showed in 
Figure 90 and 10. The system composed of equipmentÕ s is scattered across a wide geographic area. It 
consists of a set of mobile and portable transmitter-receivers deserved by a network of fixed equipmentÕ s 
located in Canada. There are two master site in operation 24 hours a day and a third one in standby, which 
is used in case of urgency, and more than 150 base stations used to transmit the signal generated through 
the microphone to portable and mobile equipment. A master site consists of core and exit routers, WAN 
and LAN switches, controllers and some operative computers plus others monitoring and dispatching 
hardware/software systems such as gateway routers, AEB, PBX, dispatching consoles Elite, and so. The 
radio sites is equipped with one or two antennas for broadband coverage on which is terminated 4 to 8 
transmitter-receiver transponders (Tx / Rx). The transponders are connected to each antenna via filtration 
equipment of type Multicoupler. The multicouplers form a chain of multicoupling able to accept other 
transponders in expansion. The range of the base station depends on its power, antenna system, terrain, 
carrier transporter (e.g. T1 or E1) and environmental conditions (see. [24, 25, 26] for more details).  
 

 
Figure 9. The reduced architecture of the radio communication network presented in Figure 10 

 (The case study) 
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Figure 10. A regional radio communication network 
 
 

Table 6. The reliability values on each node of the network 

 
   I	   II III IV V VI 

A	   0,99992 0,99992 0,99992 0,99990 0,99990 0,99996 

B	   0,99993 0,99987 0,99996 0,99918 0,99989 0,99980 

C 0,99987 0,99993 0,99996 0,99991 0,99992 0,99993 

D 0,99999 0,99997 0,99995 0,99987 0,99970 0,99993 

E 0,99998 0,99992 0,99990 0,99996 0,99996 0,99992 

F 0,99992 0,99993 0,99987 0,99996 0,99988 0,99996 

G 0,99992 0,99992 0,99995 0,99986 0,99987 0,99987 

H 0,99992 0,99987 0,99996 0,99987 0,99992 0,99996 

I 0,99993 0,99992 0,99984 0,99996 0,99993 0,99987 

J 0,99993 0,99990 0,99996 0,99986 0,99992 0,99996 

K 0,99997 0,99992 0,99987 0,99998 0,99993 0,99996 

L 0,99992 0,99995 0,99992 0,99993 0,99975 0,99996 
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Q 0,99945 0,99980 0,99990 0,99980 0,99992 0,99999 

R 0,99987 0,99992 0,99980 0,99960 0,99993 0,99987 

S 0,99993 0,99987 0,99987 0,99987 0,99992 0,99993 

T 0,99992 0,9999 0,99990 0,99986 0,99988 0,99998 
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Table 7. The reliability of each microwave link between two nodes. 
  

                            I II III IV V VI 

A 0,99998 0,99999 0,99999 0,99999 0,99999 0,99999 

B 0,99992 0,99999 0,99999 0,99999 0,99999 0,99999 

C 0,99998 0,99999 0,99998 0,99999 0,99999 0,99999 

D 0,99999 0,99998 0,99998 0,99998 0,99999 0,99999 

E 0,99999 0,99998 0,99998 0,99999 0,99998 0,99998 

F 0,99997 0,99997 0,99999 0,99998 0,99999 0,99997 

G 0,99999 0,99999 0,99999 0,99999 0,99999 0,99998 

H 0,99999 0,99999 0,99999 0,99999 0,99999 0,99999 

I 0,99999 0,99998 0,99998 0,99999 0,99999 0,99999 

J 0,99998 0,99999 0,99999 0,99998 0,99999 0,99998 

K 0,99998 0,99999 0,99998 0,99999 0,99999 1 

L 0,99999 0,99999 0,99998 0,99999 0,99999 0,99999 

M 0,99998 0,99999 0,99998 0,99999 0,99997 0,99999 

N 0,99999 0,99999 0,99998 0,99998 0,99997 0,99999 

O 0,99999 0,99998 0,99999 0,99999 0,99999 0,99999 

P 0,99996 0,99999 0,99999 0,99998 0,99997 0,99997 

Q 0,99999 0,99998 0,99999 0,99999 0,99999 0,99998 

R 0,99999 0,99999 0,99998 0,99999 0,99999 0,99998 

S 0,99999 0,99999 0,99999 0,99997 0,99999 0,99999 

T 0,99999 0,99999 0,99999 0,99998 0,99999 0,99999 

V 0,99999 0,99999 0,99999 0,99999 0,99998 0,99999 

 

 

Table 8. 𝒔𝒔, 𝒕𝒕 - Reliability joining any two nodes (dimension = 156 x 156 links). 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

 I II III IV V VI 
A 0,999853 0,9997959 0,999923 0,999843 0,99984 0,99985 

B  0,9998054 0,999788 0,999853 0,99985 0,99986 

C   0,999931 0,999717 0,99971 0,99973 

D    0,999914 0,99991 0,99992 

E    0,999697 0,99969 0,99971 

F    0,999841 0,99984 0,99985 

G     0,99984 0,99985 

H      0,99985 
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6. CONCLUSION 
 
The network reliability evaluation is an NP-complete problem. The complexity increases with the density 
of the networks. For small size networks, minimal paths set and minimal cuts can be easily used 
efficiently for reliability calculation. 

This paper introduced a series of algorithms for evaluating the reliability of general networks regardless 
of their orientation.  The proposed algorithms were validated on several test networks. They perform 
efficiently in terms of computation time and robustness. 

Some computer tools were developed and used for computing the reliability of an extensive 
telecommunication network. They have also been used to identify key components of the network to 
improve network performance indicators in terms of security, availability and serviceability, both in 
design and in operations. These tools are currently used to determine the spare parts inventory t maximize 
network availability while respecting budgetary constraints and the service levels required by the different 
network’s users.  
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